Program Outcomes (POs)

PO1	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals
	and an engineering specialization as specified in WK1 to WK4 respectively to develop to the solution of complex
	engineering problems.
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems
	reaching substantiated conclusions with consideration for sustainable development. (WK1 to WK4)
PO3	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop
	systems/components/processes to meet identified needs with consideration for the public health and safety,
	whole-life cost, net zero carbon, culture, society and environment as required. (WK5)
PO4	Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using
	research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide
	valid conclusions. (WK8).
PO5	Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT
	tools, including prediction and modelling recognizing their limitations to solve complex engineering problems.
	(WK2 and WK6)
PO6	The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex
	engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework,
	culture and environment. (WK1, WK5, and WK7)
PO7	Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to
	national & international laws. (WK9)
PO8	Individual and Collaborative Team work: Function effectively as an individual, and as a member or leader in
	diverse/multi-disciplinary teams.
PO9	Communication: Communicate effectively and inclusively within the engineering community and society at large,
	such as being able to comprehend and write effective reports and design documentation, make effective
	presentations considering cultural, language, and learning differences
PO10	Project Management and Finance: Apply knowledge and understanding of engineering management principles and
	economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage
	projects and in multidisciplinary environments.
PO11	Life-Long Learning: Recognize the need for, and have the preparation and ability for i) independent and life-long
	learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of
	technological change. (WK8)

Knowledge and Attitude Profile (WK)

WK1	A systematic, theory-based understanding of the natural sciences applicable to the discipline and awareness of
	relevant social sciences.
WK2	Conceptually-based mathematics, numerical analysis, data analysis, statistics and formal aspects of computer and
	information science to support detailed analysis and modelling applicable to the discipline.
WK3	A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline.
WK4	Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted
	practice areas in the engineering discipline; much is at the forefront of the discipline.
WK5	Knowledge, including efficient resource use, environmental impacts, whole-life cost, reuse of resources, net zero
	carbon, and similar concepts, that supports engineering design and operations in a practice area.
WK6	Knowledge of engineering practice (technology) in the practice areas in theengineering discipline.
WK7	Knowledge of the role of engineering insociety and identified issues in engineering practice in the discipline, such as

	the professional responsibility of an engineer topublic safety and sustainable development.
WK8	Engagement with selected knowledge in the current research literature of the discipline, awareness of the power of
	critical thinking and creative approaches to evaluate emerging issues.
WK9	Ethics, inclusive behavior and conduct. Knowledge of professional ethics, responsibilities, and norms of engineering
	practice. Awareness of the need for diversity by reason of ethnicity, gender, age, physical ability etc. with mutual
	understanding andrespect, and of inclusive attitudes.