BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(Autonomous Institution Affiliated to VTU, Belagavi)

Scheme of Teaching and Examinations-2022

Outcome-Based Education (OBE) and Choice Based Credit System (CBCS)

(Effective from the academic year 2022-23)

	I Semester (Electrical & El	ectronics Engineering Stream)	Dept EEE		(For Physics Group)							
			Teaching Hours / We						Exami				
Sl. No	Course Course		Course Title	TD/PSB	н Theory Lecture	L Tutorial	면 Tractical/ Drawing	sdA	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
1	*ASC(IC)	BMATE101	Mathematics for EEE Streams-I	Maths	2	2	2	0	03	50	50	100	04
2	#ASC(IC)	BPHYE102	Physics for EEE Stream	РНҮ	2	2	2	0	03	50	50	100	04
3	ESC	BEEE103	# Element of Electrical Engineering	EEE/ECE/TCE	2	2	0	0	03	50	50	100	03
4	ESC-I	BESCK104E	Introduction to C Programming	Respective Engg Dept	2	0	2	0	03	50	50	100	03
5	ETC-I	BETCK105E	Renewable Energy Sources	Any Dept	3	0	0	0	03	50	50	100	03
6	AEC	BENGK106	Communicative English	Humanities	1	0	0	0	01	50	50	100	01
7	HSMC	BKSKK107/ BKBKK107	Samskrutika Kannada/ BalakeKannada	Humanities	1	0	0	0	01	50	50	100	01
8	AEC/SDC	BIDTK158	Innovation and Design Thinking	Any Dept	0	2	0	0	02	50	50	100	01
				TOTAL	13	8	6	0	19	400	400	800	20

Electrical & Electronics Engineering Students have to study BEEE103- Element of Electrical Engineering compulsorily ## Where as Electronics and allied stream students have to study BBEE103 Basic Electronics compulsorily

SDA-Skill Development Activities, **TD/PSB**- Teaching Department / Paper Setting Board, **ASC**-Applied Science Course, **ESC**- Engineering Science Courses, **ETC**-Emerging Technology Course, **AEC**- Ability Enhancement Course, **HSMS**-Humanity and Social Science and Management Course, **SDC**- Skill Development Course, **CIE**-Continuous Internal Evaluation, **SEE**- Semester End Examination, **IC** – Integrated Course (Theory Course Integrated with Practical Course)

g-Learning Session
3-Learning Session
14 hours of practical
g-Learning Session
g-Learning Session
ng-Learning sessions
1 5- 1 2

Student's Induction Program: Motivating (Inspiring) Activities under the Induction program – The main aim of the induction program is to provide newly admitted students a broad understanding of society, relationships, and values. Along with the knowledge and skill of his/her study, students' character needs to be nurtured as an essential quality by which he/she would understand and fulfill the responsibility as an engineer. The following activities are to be covered in 21 days. Physical Activity, Creative Arts, Universal Human Values, Literary, Proficiency Modules, Lectures by Eminent People, Visits to Local areas, Familiarization with Department/Branch and Innovation, etc. For details, refer the ANNEXURE-I of Induction Programs notification of the University published at the beginning of the 1st semester.

AICTE Activity Points to be earned by students admitted to BE/ B.Tech., / B. Plan day college program (For more details refer to Chapter 6, AICTE Activity Point Program, Model Internship Guidelines): Over and above the academic grades, every regular student admitted to the 4 years Degree program and every student entering 4 years Degree programs through lateral entry, shall earn 100 and 75 Activity Points respectively for the award of degree through AICTE Activity Point Program. Students transferred from other Universities to the fifth semester are required to earn 50 Activity Points from the year of entry to VTU. The Activity Points earned shall be reflected on the student's eighth semester Grade Card. The activities can be spread over the years, any time during the semester weekends, and holidays, as per the liking and convenience of the student from the year of entry to the program. However, the minimum hours requirement should be fulfilled. Activity Points (non-credit) do not affect SGPA/CGPA and shall not be considered for vertical progression. In case students fail to earn the prescribed activity Points, an Eighth Semester Grade Card shall be issued only after earning the required activity points. Students shall be admitted for the award of the degree only after the release of the Eighth semester Grade Card.

*-BMATE101 Shall have the 03 hours of theory examination(SEE), however, practical sessions question shall be included in the theory question papers. ** The mathematics subject should be taught by a single faculty member per division, with no sharing of the course(subject)module-wise by different faculty members.

#-BPHYE102 SEE shall have the 03 hours of theory examination and 02-03 hours of practical examination.

ESC or ETC of 03 credits Courses shall have only a theory component (L:T :P:S=3:0:0:0) or if the nature the of course required experimental learning syllabus shall be designed as an Integrated course (L:T:P:S= 2:0:2:0),. **All 01 Credit-** courses shall have the SEE of 01 hours duration and the pattern of the question paper shall be MCQ

	(ESC-I) Engineering Science Courses-I					(ETC-I) Emerging Technology Courses-I			
Code	Title	L	Τ	Р	Code	Title	L	Τ	Р
BESCK104A	Introduction to Civil Engineering	3	0	0	BETCK105A	Smart Materials and Systems	3	0	0
BESCK104B	Introduction to Electrical Engineering	3	0	0	BETCK105B	Green Buildings	3	0	0
BESCK104C	Introduction to Electronics Engineering	3	0	0	BETCK105C	Introduction to Nano Technology	3	0	0
BESCK104D	Introduction to Mechanical Engineering	3	0	0	BETCK105D	Introduction to Sustainable Engineering	3	0	0
BESCK104E	Introduction to C Programming	2	0	2	BETCK105E	Renewable Energy Sources	3	0	0
					BETCK105F	Waste Management	3	0	0
					BETCK105G	Emerging Applications of Biosensors	3	0	0
					BETCK105H	Introduction to Internet of Things (IOT)	3	0	0
					BETCK105I	Introduction to Cyber Security	3	0	0
					BETCK105J	Introduction to Embedded System	3	0	0
(PLC-I) Prog	ramming Language Courses-I								
Code	Title	L	Т	Р					
BPLCK105A	Introduction to Web Programming	2	0	2					
BPLCK105B	Introduction to Python Programming	2	0	2					
BPLCK105C	Basics of JAVA programming	2	0	2					
BPLCK105D	Introduction to C++ Programming	2	0	2					
	BESCK104E/BESCK204E, Introduction to C IY DEPARTMENT	Pro	gra	mm	ing, and all co	ourses under PLC and ETC groups can be taugh	t by		

- The student has to select one course from the ESC-I group.
- **EEE** Students shall opt for any one of the courses from the ESC-I group **except**, **BESCK104B-Introduction to Electrical Engineering** and **ECE/ETC/BM/ML** students shall opt any one of the courses from ESC-I **except BESCK104C Introduction to Electronics** Engineering
- The students have to opt for the courses from ESC group without repeating the course in either 1st or 2nd semester
- The students must select one course from either ETC-I or PLC-I group.
- If students study the subject from ETC-I in 1st semester he/she has to select the course from PLC-II in the 2nd semester and vice-versa

	TO LONGLOOD		MS INSTITUTE OF TECH (Autonomous Institution Scheme of Teaching an Outcome-Based Education (OBE) (Effective from the	n Affiliated to d Examination and Choice Based academic year 2	b VTU, s-2022 l Credit S <u></u> 022-23)	Bela ystem	gavi) (CBCS)						
I Sem	nester (Electri	cal & Electroni	ics Engineering Stream) Dept E		(For the s	Теас	ts who a ching /Week	ttend		mester u		ysics Gi	:oup)
SI. No		nd Course de	Course Title	TD/PSB	Theory Lecture	Tutorial	Practical/ Drawing	SDA	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
1	*^5C(IC)			Maths	L 2	т 2	<u>Р</u> 2	s 0	03	50	50	100	04
1	*ASC(IC)	BMATE201	Mathematics for EES-II	Maths	2	Z	Z	0	03	50	50	100	04
2	#ASC(IC)	BCHEE202	Chemistry for EES	Chemistry	2	2	2	0	03	50	50	100	04
3	ESC	BCEDK203	Computer-Aided Engineering Drawing	Civil/Mech Engg dept	2	0	2	0	03	50	50	100	03
4	ESC-II	BESCK204C	Introduction to Electronics Engineering	Respective Engg Dept	3	0	0	0	03	50	50	100	03
5	PLC-II	BPLCK205D	Introduction to C++ Programming	Any Dept	2	0	2	0	03	50	50	100	03
6	AEC	BPWSK206	Professional Writing Skills in English	Humanities	1	0	0	0	01	50	50	100	01
7	HSMS	BICOK207	Indian Constitution	Humanities	1	0	0	0	01	50	50	100	01
8	HSMS	BSFHK258	Scientific Foundations of Health	Any Dept.	1	0	0	0	01	50	50	100	01
				TOTAL	. 14	4	8	0	18	400	400	800	20

SDA-Skill Development Activities, TD/PSB- Teaching Department / Paper Setting Board, ASC-Applied Science Course, ESC- Engineering Science Courses, ETC- Emerging Technology Course, AEC- Ability Enhancement Course, HSMS-Humanity and Social Science and Management Course, SDC- Skill Development Course, CIE -Continuous Internal Evaluation, SEE- Semester End Examination, IC – Integrated Course (Theory Course Integrated with Practical Course)

16.02.2023/V8

*-BMATE201 Shall have the 03 hours of theory examination(SEE), however, practical sessions question shall be included in the theory question papers. ** The mathematics subject should be taught by a single faculty member per division, with no sharing of the course(subject)module-wise by different faculty members. #-BCHEE202- SEE shall have the 03 hours of theory examination and 02-03 hours of practical examination

ESC or ETC of 03 credits Courses shall have only a theory component (L:T:P:S=3:0:0:0) or if the nature the of course required practical learning, syllabus shall be designed as an Integrated course (L:T:P:S= 2:0:2:0)

All 01 Credit- courses shall have the SEE of 01 hours duration and the pattern of the question paper shall be MCQ

	(ESC-II) Engineering Science Courses-II					(ETC-II) Emerging Technology Courses-II			
Code	Title	L	Т	Р	Code	Title	L	Т	P
BESCK204A	Introduction to Civil Engineering	3	0	0	BETCK205A	Smart materials and Systems	3	0	0
BESCK204B	Introduction to Electrical Engineering	3	0	0	BETCK205B	Green Buildings	3	0	0
BESCK204C	Introduction to Electronics Engineering	3	0	0	BETCK205C	Introduction to Nano Technology	3	0	0
BESCK204D	Introduction to Mechanical Engineering	3	0	0	BETCK205D	Introduction to Sustainable Engineering	3	0	0
BESCK204E	Introduction to C Programming	2	0	2	BETCK205E	Renewable Energy Sources	3	0	0
					BETCK205F	Waste Management	3	0	0
					BETCK205G	Emerging Applications of Biosensors	3	0	0
					BETCK205H	Introduction to Internet of Things(IoT)	3	0	0
					BETC2K05I	Introduction to Cyber Security	3	0	0
					BETCK205J	Introduction to Embedded System	3	0	0
(PLC-II) Prog	gramming Language Courses-II								
Code	Title	L	Т	Р					
BPLCK205A	Introduction to Web Programming	2	0	2					
BPLCK205B	Introduction to Python Programming	2	0	2					
BPLCK205C	Basics of JAVA programming	2	0	2					
BPLCK205D	Introduction to C++ Programming	2	0	2					

The course BESCK205E, Introduction to C Programming, and all courses under PLC and ETC groups can be taught by faculty of ANY DEPARTMENT

• The student has to select one course from the ESC-II group.

• EEE Students shall opt for any one of the courses from the ESC-I group except, BESCK202-Introduction to Electrical Engineering and ECE/ETC/BM/ML studentsshall opt any one of the courses from ESC-I except BESCK203 Introduction to Electronics Engineering

- The students have to opt for the courses from ESC group without repeating the course in either 1^{st} or 2^{nd} semester
- The students must select one course from either ETC-II or PLC-II group.
- If students study the subject from ETC-I in 1st semester he/she has to select the course from PLC-II in the 2nd semester and vice-versa

I Semester

Course Title: Mathematics-I for Electrical & Electronics Engineering Stream										
Course Code:	BMATE101	CIE Marks	50							
Course Type	Integrated	SEE Marks	50							
(Theory/Practical/Integrated)		Total Marks	100							
Teaching Hours/Week (L:T:P: S)	2:2:2:0	Exam Hours	03							
Total Hours of Pedagogy	40 hours Theory + 10-12 Lab slots	Credits	04							

Course objectives: The goal of the course **Calculus, Differential Equations and Linear Algebra** (22MATE11) is to

- **Familiarize** the importance of calculus associated with one variable and multivariable for electrical and electronics engineering.
- **Analyze** electrical and electronics engineering problems by applying Ordinary Differential Equations.
- **Develop** the knowledge of Linear Algebra to solve the system of equations.

Teaching-Learning Process

Pedagogy (General Instructions):

These are sample Strategies; which teachers can use to accelerate the attainment of the various course outcomes.

- 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop student's theoretical and applied mathematical skills.
- 2. State the need for Mathematics with Engineering Studies and Provide real-life examples.
- 3. Support and guide the students for self–study.
- 4. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress.
- 5. Encourage the students for group learning to improve their creative and analytical skills.
- 6. Show short related video lectures in the following ways:
 - As an introduction to new topics (pre-lecture activity).
 - As a revision of topics (post-lecture activity).
 - As additional examples (post-lecture activity).
 - As an additional material of challenging topics (pre-and post-lecture activity).
 - As a model solution of some exercises (post-lecture activity).

BMS Institute of Technology & Management (An Autonomous Institute under VTU, Belagavi, Karnataka - 590018) Avalahalli, Doddaballapur Main Road, Bengaluru – 560064

Module-1 Calculus (8 hours)

Introduction to polar coordinates and curvature relating to EC & EE Engineering applications. Polar coordinates, Polar curves, angle between the radius vector and tangent, angle between two curves. Pedal equations. Curvature and Radius of curvature - Cartesian, Parametric, Polar and Pedal forms. Problems.

Self-study: Center and circle of curvature, evolutes and involutes.

Applications: Communication signals, Manufacturing of microphones, and Image processing. (**RBT Levels: L1, L2 and L3**)

Module-2 Series Expansion and Multivariable Calculus (8 hours)

Introduction of series expansion and partial differentiation in EC & EE Engineering applications. Taylor's and Maclaurin's series expansion for one variable (Statement only) – problems. Indeterminate forms - L'Hospital's rule. Problems.

Partial differentiation, total derivative - differentiation of composite functions. Jacobian and problems. Maxima and minima for a function of two variables. Problems.

Self-study: Euler's Theorem and problems. Method of Lagrange's undetermined multipliers with single constraint.

Applications: Series expansion in communication signals, Errors and approximations, and vector calculus.

(RBT Levels: L1, L2 and L3)

Module-3 Ordinary Differential Equations (ODEs) of first order (8 hours)

Introduction to first order ordinary differential equations pertaining to the applications for EC& EE engineering.

Linear and Bernoulli's differential equations. Exact and reducible to exact differential equations -

Integrating factors on $\frac{1}{N} \left[\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right]^{T}$ and $\frac{1}{M} \left[\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right]^{T}$ Applications of ODE's – Orthogonal

Trajectories, L-R and C-R circuits.

Nonlinear differential equations: Introduction to general and singular solutions, Solvable for p only, Clairaut's equations, **r**educible to Clairaut's equations. **Problems.**

Self-Study: Applications of ODE's: Solvable for x and y.

Applications of ordinary differential equations: L-R and C-R circuits, Rate of Growth or Decay, Conduction of heat.

(RBT Levels: L1, L2 and L3)

Module-4 Integral Calculus (8 hours)

Introduction to Integral Calculus in EC & EE engineering applications.

Multiple Integrals: Evaluation of double and triple integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates. Applications to find Area and Volume by double integral. Problems.

Beta and Gamma functions: Definitions, properties, relation between Beta and Gamma functions. Problems.

Self-Study: Volume by triple integration, Center of gravity.

Applications: Antenna and wave propagation, Calculation of optimum power in electrical circuits, field theory.

(RBT Levels: L1, L2 and L3)

Module-5 Linear Algebra (8 hours)

Introduction of liner algebra related to EC & EE engineering applications.

Elementary row transformation of a matrix, Rank of a matrix. Consistency and Solution of system of linear equations - Gauss-elimination method, Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigenvalues and Eigenvectors, Rayleigh's power method to find the dominant Eigenvalue and Eigenvector. Problems

Self-Study: Solution of system of equations by Gauss-Jacobi iterative method. Inverse of a square matrix by Cayley- Hamilton theorem.

Applications of Linear Algebra: Network Analysis, Markov Analysis, Critical point of a network system. Optimum solution.

(RBT Levels: L1, L2 and L3)

List of	Laboratory experiments (2 hours/week per batch/ batch strength 15)
10 lab	sessions + 1 repetition class + 1 Lab Assessment
1	2D plots for Cartesian and polar curves
2	Finding angle between polar curves, curvature and radius of curvature of a given
	curve
3	Finding partial derivatives, Jacobian and plotting the graph
4	Applications to Maxima and Minima of two variables
5	Solution of first order differential equation and plotting the graphs
6	Program to compute area, volume and centre of gravity
7	Evaluation of improper integrals
8	Numerical solution of system of linear equations, test for consistency and graphical
	representation
9	Solution of system of linear equations using Gauss-Seidel iteration
10	Compute eigenvalues and eigenvectors and find the largest and smallest eigenvalue
	by Rayleigh power method.
00	ted software's : Mathematica/MatLab/Python/Scilab
	outcome (Course Skill Set)
	end of the course the student will be able to:
CO1	apply the knowledge of calculus to solve problems related to polar curves.
CO2	learn the notion of partial differentiation to compute rate of change multivariate functions
CO3	apply the concept of change of order of integration and variables to evaluate multiple integral and their usage in computing area and volume.

BMS Institute of Technology & Management (An Autonomous Institute under VTU, Belagavi, Karnataka - 590018) Avalahalli, Doddaballapur Main Road, Bengaluru – 560064

CO4	make use of matrix theory for solving for system of linear equations and compute
	eigenvalues and eigenvectors

CO5 familiarize with modern mathematical tools namely SCILAB/PYTHON/MATLAB

Question paper pattern:

- **SEE** will be conducted for 100 marks.
- The question paper will have 10 questions. Two questions per module. Each question is set for 20 marks. The students have to answer 5 full questions, selecting one full question from each module.
- There will be three tests and 2 assignments for theory and 1 test for lab under **CIE**.
- The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%.
- The CIE marks distribution for theory is 20 marks from the three tests and 10 marks from two assignments. There will be 20 marks allocated for lab test.

CIE test will be announced prior to the commencement of the course.

Suggested Learning Resources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year) Text Books

- 1. **B. S. Grewal**: "Higher Engineering Mathematics", Khanna publishers, 44th Ed., 2021.
- 2. E. Kreyszig: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed., 2018.

Reference Books

- 1. V. Ramana: "Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017
- Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press, 3rd Ed., 2016.
- 3. **N.P Bali and Manish Goyal**: "A textbook of Engineering Mathematics" LaxmiPublications, 10th Ed., 2022.
- 4. **C. Ray Wylie, Louis C. Barrett:** "Advanced Engineering Mathematics" McGraw HillBook Co., Newyork, 6th Ed., 2017.
- 5. **Gupta C.B, Sing S.R and Mukesh Kumar:** "Engineering Mathematic for Semester I andII", Mc-Graw Hill Education(India) Pvt. Ltd 2015.
- 6. **H. K. Dass and Er. Rajnish Verma:** "Higher Engineering Mathematics" S. ChandPublication, 3rd Ed., 2014.
- 7. James Stewart: "Calculus" Cengage Publications, 7th Ed., 2019.
- 8. David C Lay: "Linear Algebra and its Applications", Pearson Publishers, 4th Ed., 2018.
- 9. Gareth Williams: "Linear Algebra with applications", Jones Bartlett Publishers Inc., 6th Ed., 2017.

Web links and Video Lectures (e-Resources):

- http://nptel.ac.in/courses.php?disciplineID=111
- http://www.class-central.com/subject/math(MOOCs)
- http://academicearth.org/
- VTU e-Shikshana Program
- VTU EDUSAT Program

BMS Institute of Technology & Management (An Autonomous Institute under VTU, Belagavi, Karnataka - 590018)

Avalahalli, Doddaballapur Main Road, Bengaluru – 560064

- Quizzes
- Assignments
- Seminar

COs and POs Mapping (Individual teacher has to fill up)

COs	COs POs									
-	1	2	3	4	5	6	7			
CO1	3	2								
CO2	3	2								
CO3	3	2								
CO4	3	2								
CO5					3					
Level 3- Highly Mapped,		Level 2-N	Ioderately Ma	pped, Leve	el 1-Low Mapp	bed, Level	0- Not Mapped			

	DEPARTMENT OF PHYSICS		
Che	oice Based Credit System (CBCS)		
	SEMESTER - I/II		
PHY	SICS FOR EEE STREAM (2:2:2) 4		
(SPECIFI	C TO ELECTRICAL STREAM BRANCHES)		
(Effectiv	ve from the academic year 2022 -2023)		
Course Code	BPHYE102/202	CIE Marks	50
Course Type	Integrated	Course	4
	-	Credit	
Teaching Hours/Week (L:T:P:S)	2:2:2:0	SEE Marks	50
Total Number of contact Hours	40 hours Theory + 12 lab sessions	Exam Hours	03 + 02
Theory/lab sessions	-		
Course Objectives:			
This source will enable students to			

This course will enable students to:

- Understand the principles of quantum mechanics and its applications.
- Study the dielectric and superconducting properties of materials.
- Understand the fundamentals of Lasers, optical fibers and their application.
- Understand the fundamentals of vector calculus and EM waves, semiconductors and devices.
- Apply the concepts required for the measurement of physical parameters related to engineering.
- Compare and analyze the results of the experiments.

Preamble: Introduction, Quantum Mechanics - Applications. Electrical Properties of Solids. Lasers and Optical fibers, Maxwell's equations and EM waves, Semiconductors and devices.

Module – 1 Quantum Mechanics

Self-study topics: Dual nature of light and wave particle dualism

Introduction, de-Broglie hypothesis and Matter Waves, de-Broglie wavelength and derivation of expression by analogy, Representation of matter waves, Phase Velocity and Group Velocity (qualitative), Heisenberg's Uncertainty Principle and its application (Non-existence of electron inside the nucleus-Relativistic case), Principle of wave particle Complementarity, Wave Function " ψ " and its properties, time dependent (qualitative), time independent Schrodinger wave equation (derivation), Physical significance of a wave function and Born Interpretation, Probability (Expectation value), Eigen functions and Eigen Values, Particle inside a one-dimensional infinite potential well and extended to free particle, Mapping of Wavefucntion and probability density, Numerical Problems.

(8 Hours)

Module – 2

Electrical Properties of Solids

Self-learning: Basics of dielectrics, Temperature dependence of resistivity of metals.

Dielectric Properties: Introduction, Polar and non-polar dielectrics, Types of Polarization, internal fields in solid, Clausius-Mossotti equation (Derivation), solid, liquid and gaseous dielectrics. Application of dielectrics in transformers, Capacitors and Electrical Insulation. Numerical problems.

Superconductivity: Introduction, Meissner's Effect, Critical current, Silsbee Effect, Types of Super Conductors, Temperature dependence of Critical field, BCS theory (Qualitative), High Temperature

superconductivity. Applications- SQUID, MAGLEV. Numerical problems.

(8 Hours)

Module – 3

Lasers and Optical Fibers

Self-learning: Characteristics of LASER, Propagation Mechanism & TIR in optical fiber

Lasers: Introduction, Interaction of radiation with matter, Expression for energy density equation and its significance. Requisites of a Laser system. Conditions for Laser action. Principle, Construction and working of Nd-YAG laser. Application of Lasers in Defence (Laser range finder) and Laser Printing. Numerical problems.

Optical Fibers: Introduction, Propagation mechanism, TIR, angle of acceptance, Numerical aperture, fractional index change, Modes of propagation, Number of modes and V parameter, Types of optical fibers. Attenuation and expression for attenuation coefficient (qualitative), Attenuation spectrum of an optical fiber with optical windows, Merits and demerits. Applications: Discussion of the block diagram of point-to-point communication, Intensity-based fiber optic displacement sensor. Numerical problems.

(8 Hours)

Module – 4

Maxwell's Equations and EM waves

Self-learning: Fundamentals of vector calculus, Description of laws of electrostatics, magnetism and Faraday's laws of EMI, Ampere's circuital law.

Maxwell's Equations: Introduction, Divergence and curl of electric field and magnetic field (static), Gauss' divergence theorem and Stokes' theorem (qualitative). Derivations of four Maxwell's equations and its significance. Current density & equation of Continuity (with derivation); displacement current (with derivation) Maxwell's equations in vacuum. Numerical problems.

EM Waves: The wave equation in differential form in free space (Derivation of the equation using Maxwell's equations), Plane electromagnetic waves in vacuum, and their transverse nature. Numerical problems.

(8 Hours)

Module – 5

Semiconductor and Devices

Self-learning: Basics of Semiconductors, Band Theory of Solids, Photodiode.

Introduction, Fermi energy and Fermi level, Fermi level in intrinsic semiconductors, Expression for concentration of electrons in conduction band & holes concentration in valance band (qualitative), Law of mass action, Electrical conductivity of a semiconductor (derivation), Hall effect, Expression for Hall coefficient (derivation) and its application.

Construction and working of Semiconducting Laser, Four probe method to determine resistivity, solar cell, Photodiode and Power Responsivity, Phototransistor. Numerical problems.

(8 Hours)

	(o nours)
Laboratory component	
(10 experiments have to be completed from the list of experiments)	
List of experiments:	
1. Transistor Characteristics	
2. Photo-Diode Characteristics	

3. Magnetic Field at any point along the axis of a circular coil

- 4. Fermi Energy
- 5. Four Probe Method
- 6. Black Box

7. Energy Gap of the given Semiconductor

- 8. Plank's Constant using LEDs
- 9. Numerical Aperture using optical fiber
- 10. Wavelength of LASER using Grating
- 11. Charging and Discharging of a Capacitor
- 12. Series and Parallel LCR Circuits
- 13. Dielectric Constant
- 14. Design the circuit for series/parallel LCR with different given LCR components
- 15. Determine the wavelength of LED using Planck's relations
- 16. PHET Interactive Simulations

(https://phet.colorado.edu/en/simulations/filter?subjects=physics&type=html,prototype)

17. Online Circuit Simulator (https://www.partsim.com/simulator)

18. Study of Electrical quantities using spreadsheet.

Course outcomes (COs):

The students will be able to:

CO1: Apply the principles of quantum mechanics and superconductivity in Engineering applications.
 CO2: Apply the principles of Lasers, Optical fibres and Maxwell's equations in the field of Photonics.
 CO3: Analyse significant properties semiconductors, dielectrics and its different applications in engineering.

CO₄: Evaluate the physical parameters for the related technology.

CO₅: Evaluate and interpret the obtained experimental result (s) related to engineering fields

		Continuous Internal	Evaluati	on (CIE)		
PHYSICS (L:	T:P/Credit = 2:	:2:2/4)			Durati	on: 03
		Internal Assessment	Max-	Average	Marks after	Final
			marks	marks	Scale-Down	Marks
	IA	IA-1 (1.5 hrs.)	40		30 Marks	
Theory				30		
		IA-2 (1.5 hrs.)	40			
Component					Passing standard	
		IA-3 (1.5 hrs.)	40			
	<u> </u>		10		(40% i.e., 12	
	Assignment	A1 (1 hr)	10	10		
	AAT	AAT-1 (1 hr)	10	10	marks)	
Practical	Cumulative	30 marks per experiment	-			30+20
			-			= 50
Component	marks of	(conduction, calculation,			20 Marks	- 30
	experiments	viva, report, record				
		submission, 2hrs/per			Passing standard	
		week, batch strength: 18		15	(40% i.e., 08	
	IA	IA (02/03 hrs.)	50	05	marks)	

Semester End Examination (SEE)

Examination Duration: 3 hrs.

Max. Marks: 100 Note: The maximum of 04/05 questions to be set from the practical component of the integrated course, the total marks of all question should not be more than 30 marks

			Max. Marks	Max. Marks	Final marks
	No. of modules	05	200		
Theory					50
Component	Questions/Module	02	40	100	Passing standard
	Marks/Question	20	20		(35 % i.e., 18 marks)
	No. of Question to be answered/module	01	20	_	
	No. of Questions to be answered /course	05	100		

Note: A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/course if **CIE** score \geq **40 %**, **SEE** score \geq **35 %**, and a sum total of **CIE+SEE** \geq **40 %**.

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)

- 1. M N Avadhanulu and P G Kshirsagar, "Engineering Physics," S. Chand and company Pvt. Ltd., 11th edition, 2014.
- 2. R K Gaur & S L Gupta, "Engineering Physics," Dhanpat Rai Publications, 8th edition, 2018.
- 3. Vibrations and Waves (MIT introductory Physics Series), A P French, CBS, 2003 Edition
- 4. Timoshenko, S. and Goodier J.N. "Theory of Elasticity", 2nd Edition, McGraw Hill Book Co, 2001.
- 5. Sadhu Singh, "Theory of Elasticity", Khanna Publishers, 1997
- 6. Mechanical Properties of Engineered Materials by Wole Soboyejo, CRC Press; 1st edition, 2002
- Heat & Thermodynamics and Statistical Physics (XVIII-Edition) Singhal, Agarwal & Satyaprakash – Pragati Prakashan, Meerut, 2006. 4
- 8. Heat and Thermodynamics (I-Edition) D.S.Mathur S. Chand & Company Ltd., New-Delhi, 1991
- 9. Heat and Thermodynamics, Brijlal& Subramanyam, S. Chand & Company Ltd., New-Delhi.
- 10. Materials Characterization Techniques-Sam Zhang, Lin Li, Ashok Kumar, CRC Press, First Edition, 2008.
- 11. Characterization of Materials- Mitra P.K. Prentice Hall India Learning Private Limited.
- 12. Nanoscience and Nanotechnology: Fundamentals to Frontiers M.S.Ramachandra Rao & Shubra Singh, Wiley, India Pvt Ltd.
- 13. Nano Composite Materials-Synthesis, Properties and Applications, J. Parameswaranpillai, N.Hameed, T.Kurian, Y. Yu, CRC Press.
- 14. Shock waves made simple by Chintoo S Kumar, K Takayama and K P J Reddy: Willey India Pvt. Ltd,Delhi,2014
- 15. S O Pillai, "Solid State Physics," New Age International publishers, 8th edition, 2017.
- 16. David Jeffery Griffiths, "Introduction to Electrodynamics", Pearson New International Edition, 4th edition, 2017
- 17. B B Laud, "Lasers and Non-Linear Optics," New Age International publishers, 3rd edition, 2018.
- 18. Arthur Beiser, "Concepts of Modern Physics", Tata McGraw-Hill Education, 6th edition, 2010.
- 19. Resnick, Walker and Halliday "Principles of Physics, Wiley publisher, 10th edition, 2015.
- 20. Ben G. Streetman, Sanjay Banerjee, "Solid State Electronic Devices" Pearson Prentice Hall, 6th edition, 2010.
- 21. S. K. Dwivedi, A Textbook of Engineering Physics, I K International Publishing House Pvt. Ltd., 1st edition 2010.
- C L Arora, "B.Sc. Practical Physics", S CHAND and company Ltd. 1st edition 2010 Worsnop and Flint, "Advanced physics practical for students", Metuen and Co, London 2005.
- 23. D Chattopadhyay and P C Rakshit, "Advanced course in Practical Physics", New central book agency 8th edition, 2013.

Web links and Video Lectures (e-Resources):

- 1. Simple Harmonic motion:https://www.youtube.com/watch?v=k2FvSzWeVxQ
- 2. Shock waves:https://physics.info/shock/
- 3. Shock waves and theirapplications:https://www.youtube.com/watch?v=tz_3M3v3kxk
- 4. Stress-strain curves:https://web.mit.edu/course/3/3.11/www/modules/ss.pdf
- 5. Stress curves:https://www.youtube.com/watch?v=f08Y39UiC-o
- 6. Fracture in materials:https://www.youtube.com/watch?v=x47nky4MbK8
- 7. Thermoelecticity:https://www.youtube.com/watch?v=2w7NBuu5w9c&list=PLtkeUZItwHK5y6qy 1GFxa4Z4RcmzUaaz6

B.E. ELECTRICAL AND ELECTRONICS ENGINEERING Choice Based Credit System (CBCS)

SEMESTER – I/II

Elements of Electrical Engineering(3:0:0) 3 (Effective from the academic year 2022-23)							
Course Code	BEEE103/203	CIE Marks	50				
Teaching Hours/Week (L:T:P)	2:2:0	SEE Marks	50				
Total Number of Contact Hours	40	Exam Hours	3				

Course Objectives:

This course will enable students to:

- 1. To explain the basic laws used in the analysis of DC circuits.
- 2. To explain the behaviour of circuit elements in single-phase circuits.
- 3. To explain three phase circuits, balanced loads and measurement of three phase power.
- 4. To explain the measuring techniques, measuring instruments and domestic wiring.
- 5. To explain domestic wiring, equipment and personal safety measures.

Module – I

Preamble : Significance and Scope of the Electrical Engineering, Importance of the Course in Economic growth of Nation, Impact of the course on Societal Problems/ Sustainable Solutions/ National Economy, Career Perspective, Innovations (Current), Research status/trends.

D. C. Circuits: Introduction, Ohm's Law and Kirchhoff's Laws, analysis of series, parallel and series- parallel circuits excited by independent voltage sources. Power and Energy. Illustrative examples.

Single-phase A.C. Circuits: Introduction, generation of sinusoidal voltage, definition of average value, root mean square value, form factor and peak factor of sinusoidally varying voltage and current, phasor representation of alternating quantities.

Hands-on: Verification of KCL and KVL through practical circuit building.

(08 Hours)

Module – II

Analysis of Single-phase A.C. Circuits: Analysis with phasor diagrams, of R, L, C, R-L, R-C and R-L-C series circuits, R-L-C parallel circuits with phasor diagrams, real power, reactive power, apparent power, and Power factor. Simple Numerical.

Hands-on: Measurement of circuit parameters (R, L, power factor etc)in a choke coil.

(08 Hours)

Module – III

Three Phase Circuits: Introduction to three phase systems, Necessity and advantages of three phase systems, generation of three phase power, definition of Phase sequence, balanced supply and balanced load. Relationship between line and phase values of balanced star and delta connections. Power in balanced three-phase circuits, measurement of power by two-wattmeter method. Simple Numerical.

Hands-on: Verification of line and phase quantities in a 3-phase star/delta connected electric circuit

(08 Hours)

Module – IV

Measuring instruments: Construction and working principle of whetstone's bridge, Maxwell's bridge for inductance, Schering's bridge for capacitance, wattmeter and energy meter including simple numerical.

Hands on: Measurement of power in a three-phase circuit using two-wattmeter method. (08 Hours)

Module – V

Domestic Wiring: Service mains, meter board and distribution board. Two-way and three-way control of a lamp.

Equipment Safety measures: Working principle of Fuse and Miniature circuit breaker (MCB), merits and demerits.

Personal safety measures: . Electric shock, precautions against shock –Earthing: Earthing and its types, Pipe and Plate earthing

Hands-on: Verification of Two-way and three-way control of lamp and earthing experiment (08 Hours)

Course Outcomes:

The students will be able to:

CO1: Understand the concepts of DC and AC circuits.

CO2 : Analyze the working of single-phase AC circuits.

CO3: Analyze the working of three phase AC circuits.

CO4 :Understand the concepts of measurements and measuring Instruments

CO5: Explain the concepts of domestic wiring, circuit protective devices

and personal safety measures.

Continuous Internal Evaluation (CIE)

		Internal Assessm		Max- marks	Avera ge marks	Marks a Scale-D		Final Marks	
Theory	IA	IA-1 (1.5	hrs)	40	40	30		50 (Passing	
Component		IA-2 (1.5	hrs)	40				standard 40% i.e.,	
		IA-3 (1.5	hrs)	40				20 marks	
	Assignment	A1 (1 hr		20	20	20		1	
	AAT	Seme	ster En	Examina	tion (SE) (I			
Examination	Examination Duration- 3 Hrs Max. Marks 100								
				Max. Mar	ks Ma	x. Marks	Final	marks	
	No. of modul	es	05	200					

		Questions/Module	02	40		50	
	Theory	Marks/Question	20	20	100	(Passing	
	Component	No. of Question to be	01	20		standard 40%	
		answered/module				i.e., 20 marks	
		No. of Questions to	05	100			
l		be answered /course					

Textbooks:

Basic Electrical Engineering by D C Kulshreshtha, Tata McGraw Hill, First Edition 2019.
 A text book of Electrical Technology by B.L. Theraja, S Chand and Company, reprint edition 2014

References:

1. Basic Electrical Engineering, D. P. Kothari and I. J. Nagrath, Tata McGraw Hill 4th edition, 2019.

2. Principles of Electrical Engineering & Electronics by V. K. Mehta, Rohit Mehta, S. Chand and Company Publications, 2nd edition, 2015.

3. Electrical Technology by E. Hughes, Pearson, 12th Edition, 2016.

4. Electrical and electronic measurements and instrumentation by A K Sawhney, Dhanapat Rai and Co. edition, January 2015

	PUTER SCIENCE AND ENG ice Based Credit System (
	SEMESTER – I / II	()	
	uction to C Programming om the academic year 2022	• •	
Course Code	BESCK104E/204E	CIE Marks	50
Teaching Hours/Week (L:T:P)	2:0:2	SEE Marks	50
Total Number of Contact Hours	26(L) + 26(T)	Exam Hours	03
Course Objectives:	20(1) + 20(1)	LXalli Hours	05
1. Elucidate the basic architectur	re and functionalities of a co	omputer.	
2. Apply programming construct		•	
		_	
3.Explore user-defined data		structures, and po	inters in
implementing solutions to pro			
4. Design and Develop Solutions	to problems using modula	ar programming constr	ucts such
as functions and procedures.			
	Module – I		
Introduction to C: Introduction programs. Introduction to C, Str	ucture of C program, File	s used in a C program	n, Compilers,
	ucture of C program, File ms, variables, constants, In	s used in a C program	n, Compilers, s in C.
programs. Introduction to C, Str Compiling and executing C progra	ucture of C program, File ms, variables, constants, In	s used in a C program	n, Compilers, s in C.
programs. Introduction to C, Str Compiling and executing C progra	ucture of C program, File ims, variables, constants, In 2.2, 8.1 – 8.6, 9.1-9.14 Module – II	s used in a C program	n, Compilers,
programs. Introduction to C, Str Compiling and executing C progra Textbook: Chapter 1.1-1.9, 2.1-2	ucture of C program, File Ims, variables, constants, In 2.2, 8.1 – 8.6, 9.1-9.14 <u>Module – II</u> nd typecasting. statements: Introductio	s used in a C program nput/output statements n to decision control,	n, Compilers, s in C. (6 Hours) Conditional
programs. Introduction to C, Str Compiling and executing C progra Textbook: Chapter 1.1-1.9, 2.1-2 Operators in C, Type conversion at Decision control and Looping branching statements, iterative st	ucture of C program, File ims, variables, constants, In 2.2, 8.1 – 8.6, 9.1-9.14 Module – II nd typecasting. statements: Introductio tatements, nested loops, b	s used in a C program nput/output statements n to decision control,	n, Compilers, s in C. (6 Hours) Conditional
programs. Introduction to C, Str Compiling and executing C progra Textbook: Chapter 1.1-1.9, 2.1-2 Operators in C, Type conversion at Decision control and Looping branching statements, iterative st statement.	ucture of C program, File ims, variables, constants, In 2.2, 8.1 – 8.6, 9.1-9.14 Module – II nd typecasting. statements: Introductio tatements, nested loops, b	s used in a C program nput/output statements n to decision control,	n, Compilers, s in C. (6 Hours) Conditional ements, goto
programs. Introduction to C, Str Compiling and executing C progra Textbook: Chapter 1.1-1.9, 2.1-2 Operators in C, Type conversion at Decision control and Looping branching statements, iterative st statement.	ucture of C program, File ims, variables, constants, In 2.2, 8.1 – 8.6, 9.1-9.14 Module – II nd typecasting. statements: Introductio tatements, nested loops, b 0.1-10.6 Module – III	s used in a C program nput/output statements n to decision control, reak and continue state	n, Compilers, s in C. (6 Hours) Conditional ements, goto (6 Hours)
programs. Introduction to C, Str Compiling and executing C progra Textbook: Chapter 1.1-1.9, 2.1-2 Operators in C, Type conversion at Decision control and Looping branching statements, iterative st statement. Textbook: Chapter 9.15-9.16, 10	ucture of C program, File ums, variables, constants, In 2.2, 8.1 – 8.6, 9.1-9.14 Module – II nd typecasting. statements: Introductio tatements, nested loops, b 0.1-10.6 Module – III inctions, Function definiti	s used in a C program nput/output statements n to decision control, reak and continue state	n, Compilers, s in C. (6 Hours) Conditional ements, goto (6 Hours) on, function
programs. Introduction to C, Str Compiling and executing C progra Textbook: Chapter 1.1-1.9, 2.1-2 Operators in C, Type conversion at Decision control and Looping branching statements, iterative st statement. Textbook: Chapter 9.15-9.16, 10 Functions: Introduction using fu	ucture of C program, File ums, variables, constants, In 2.2, 8.1 – 8.6, 9.1-9.14 Module – II nd typecasting. statements: Introductio tatements, nested loops, b 0.1-10.6 Module – III inctions, Function definiti	s used in a C program nput/output statements n to decision control, reak and continue state	n, Compilers, s in C. (6 Hours) Conditional ements, goto (6 Hours) on, function
programs. Introduction to C, Str Compiling and executing C progra Textbook: Chapter 1.1-1.9, 2.1-2 Operators in C, Type conversion at Decision control and Looping branching statements, iterative st statement. Textbook: Chapter 9.15-9.16, 10 Functions: Introduction using fu call, return statement, passing p recursive functions.	ucture of C program, File ums, variables, constants, In 2.2, 8.1 – 8.6, 9.1-9.14 Module – II nd typecasting. statements: Introductio tatements, nested loops, b 0.1-10.6 Module – III inctions, Function definiti parameters to functions, s	s used in a C program nput/output statements n to decision control, reak and continue state	n, Compilers, s in C. (6 Hours) Conditional ements, goto (6 Hours) on, function rage classes
programs. Introduction to C, Str Compiling and executing C progra Textbook: Chapter 1.1-1.9, 2.1-2 Operators in C, Type conversion at Decision control and Looping branching statements, iterative st statement. Textbook: Chapter 9.15-9.16, 10 Functions: Introduction using fu call, return statement, passing p	ucture of C program, File ums, variables, constants, In 2.2, 8.1 – 8.6, 9.1-9.14 Module – II nd typecasting. statements: Introductio tatements, nested loops, b 0.1-10.6 Module – III unctions, Function definiti parameters to functions, s ccessing the elements of	s used in a C program nput/output statements n to decision control, reak and continue state	n, Compilers, s in C. (6 Hours) Conditional ements, goto (6 Hours) on, function rage classes,

Module – IV	
Two dimensional arrays, operations on two-dimensional arrays, two-dimensional functions, multidimensional arrays.	onal arrays to
Applications of arrays and introduction to strings: Applications of arrays, c sorting techniques.	ase study with
Introduction to strings: Reading strings, writing strings, summary of funct and write characters.Suppressing input using a Scan set. Textbook: Chapter 12.7-12.12	tions used to read (6 Hours)
Module – V	
Strings: String taxonomy, operations on strings, Miscellaneous string and char arrays of strings.	acter functions,
Pointers: Understanding the Computer's Memory, Introduction to Pointers, De Variables	eclaring Pointer
Structures: Introduction to structures.	
Textbook:Chapter13.1-13.6,14.1-14.3,15.1	(6 Hours)

 Character. Program to balance the given Chemical Equation values x, y, p, q of a simple equation of the type: The task is to find the values of constants b1, b2, b3 such equation is balanced on both sides and it must be the reduced form. Implement Matrix multiplication and validate the rules of multiplication. Compute sin(x)/cos(x) using Taylor series approximation. Compare you result built-in library function. Print both the results with appropriate inferences. Sort the given set of N numbers using Bubblesort. length. Convince the parameter passing techniques. 	1	C Program to find Mechanical Energy of a particle using $E = mgh+1/2 mv2$.
 Character. Program to balance the given Chemical Equation values x, y, p, q of a simple equation of the type: The task is to find the values of constants b1, b2, b3 such equation is balanced on both sides and it must be the reduced form. Implement Matrix multiplication and validate the rules of multiplication. Compute sin(x)/cos(x) using Taylor series approximation. Compare you result built-in library function. Print both the results with appropriate inferences. Sort the given set of N numbers using Bubblesort. length. Convince the parameter passing techniques. Implement structures to read, write and compute average-marks and the stud scoring above and below the average marks for a class of N students. 	2	C Program to convert Kilometers into Meters and Centimeters.
 equation is balanced on both sides and it must be the reduced form. Implement Matrix multiplication and validate the rules of multiplication. Compute sin(x)/cos(x) using Taylor series approximation. Compare you result built-in library function. Print both the results with appropriate inferences. Sort the given set of N numbers using Bubblesort. length. Convince the parameter passing techniques. Implement structures to read, write and compute average-marks and the stud scoring above and below the average marks for a class of N students. 	3	C Program To Check the Given Character is Lowercase or Oppercase or Special Character. Program to balance the given Chemical Equation values x, y, p, q of a simple chemical
 6 Compute sin(x)/cos(x) using Taylor series approximation. Compare you result built-in library function. Print both the results with appropriate inferences. 7 Sort the given set of N numbers using Bubblesort. 8 length. Convince the parameter passing techniques. 9 Implement structures to read, write and compute average-marks and the stud scoring above and below the average marks for a class of N students. 		
built-in library function. Print both the results with appropriate inferences. 7 Sort the given set of N numbers using Bubblesort. 8 length. Convince the parameter passing techniques. 9 Implement structures to read, write and compute average-marks and the stud scoring above and below the average marks for a class of N students.	5	Implement Matrix multiplication and validate the rules of multiplication.
 7 Sort the given set of N numbers using Bubblesort. 8 length. Convince the parameter passing techniques. 9 Implement structures to read, write and compute average-marks and the stud scoring above and below the average marks for a class of N students. 	6	Compute $sin(x)/cos(x)$ using Taylor series approximation. Compare you result with the built-in library function. Print both the results with appropriate inferences.
 9 Implement structures to read, write and compute average-marks and the stud scoring above and below the average marks for a class of N students. 	7	
	8	length. Convince the parameter passing techniques.
all elements stored in an array of N real numbers.	9	Implement structures to read, write and compute average-marks and the students scoring above and below the average marks for a class of N students.
		all elements stored in an array of N real numbers.
estec software's : gcc compiler, Ubuntu Operating System	ış estec	software's : gcc compiler, Ubuntu Operating System

Course Outcomes

At the end of the course the student will be able to:

- **CO1.** Elucidate the basic architecture and functionalities of a computer and recognize the hardware parts.
- **CO2**. Apply programming constructs of C language to solve the real-world problem.
- **CO3**. Explore user-defined data structures like arrays in implementing solutions to problems like searching and sorting.
- **CO4**. Explore user-defined data structures like structures, unions and pointers in implementing solutions.
- **CO5.** Design and Develop Solutions to problems using modular programming constructs using functions.

CONTINUOUS INTEDNAL EVALUATION (CIE)

	CON	I I INUOUS IN I ERNAI	LEVALUAI	ION (CIE)		
		Internal Assessments (IAs)	Max. Marks	Average Marks	Marks after scale- down	Final Marks
		IA-1 (1.5 hr)	40		30 Marks	
Theory Component	IA	IA-2 (1.5 hr)	40	40		
		IA-3 (1.5 hr)	40		Passing	
	Assignment A-1 (1 hr)		10	10	Standard (40% i. e	
	AAT	AAT-1 (1 hr)	10	10	12 Marks)	20.20
Practical Component	Cumulative Marks of Experiments	10 Marks/ Expt. (Write-up, Conduction, Viva- voce, Report, etc.) (2 hrs/Week) / batch (Strength: 36)	-	15	20 Marks Passing Standard (40% i. e	30 +20 = 50
component	IA	IA-1 (02/03 hrs)	50	5	08 Marks)	

SEMESTER END EXAMINATION (SEE)

Examination Duration: 03 hrs

Max. Marks: 100

Note: The maximum of 04/05 questions to be set from the practical component of integrated course, the total marks of all questions should not be more than 30 marks.

			Max. Marks	Max. Marks	Final Marks
	No. of Modules	05	200		50
	No. of Questions/ Module	02	40		50
Theory	Marks/Question	20	20	100	Passing
Component	No. of Questions to be answered/ module	01	20		Standard
	No. of Questions to be answered/ course	05	100		(35% i.e 18 Marks)
	deemed to have satisfied the academic requi CIE Score ≥ 40 %, SEE Score ≥ 35 %, and a				each

Text books:

1. Computer fundamentals and programming in c, "Reema Thareja", Oxford University, Second edition, 2017.

References:

- 1. E. Balaguruswamy, Programming in ANSI C, 7th Edition, Tata McGowan-Hill.
- 2. Brian W. Kernighan and Dennis M. Ritchie, The 'C' Programming Language, Prentice Hall of India.

Web links and Video Lectures (e-Resources):

1.Elearning.vtu.ac.in/econtent/courses/video/BS/15PCD23.html

2.https://nptel.ac.in/courses/106/105/106105171/ MOOC courses can be adopted for more clarity inunderstanding the topics and verities of problem solving methods.

B.E. ELECTRICAL AND ELECTRONICS ENGINEERING Choice Based Credit System (CBCS) SEMESTER – I/II

	SEMESTER – I/II		
	ABLE ENERGY SOURCES (m the academic year 2022		
Course Code	BETCK105E/205E	CIE Marks	50
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	50
Total Number of Contact Hours	40	Exam Hours	3
 Course Objectives: Create awareness about sou available conventional fuel r Learn the fundamental conc Study on the applications of Understand the working of geothermal energy system. 	eserves will last. epts about solar energy sys wind energy.	stems and devices.	
	Module – I		
INTRODUCTION: World Energy Aspects of Energy Utilisation– Ren Potentials – Achievements / Applic	ewable Energy Scenario in	n India and around	the World –
		(0)	8 Hours)
	Module – II		
SOLAR ENERGY: Solar Radiation Concentrating Collectors – Solar Generation - Fundamentals of Sola Generation – Solar PV Applications	direct Thermal Applica r Photo Voltaic Conversion	itions – Solar the n – Solar Cells – Sol	rmal Power
	Module – III	(00	, 110 41 0 j
WIND ENERGY: Wind Data and Performance – Site Selection– Deta Aspects		ator – Safety and Er	
	Module – IV	(001	100155
BIO – ENERGY: Biomass direct con Ethanol production– Bio diesel – Co	-	lications	- Digesters – Iours)
	Module – V		,
OTHER RENEWABLE ENERGY SO OTEC Cycles – Small Hydro-Geothe Hybrid systems.		nd Storage – Fuel c	
Course Outcomes		(00	
Course Outcomes:			
The students will be able to: CO1: Explain the importance and ap			

CO2: Describe the method of power generation from Solar, wind, bio- Energy

CO3: Describe the Tidal energy, Wave Energy, OTEC, Hydro energy, Geothermal Energy, Fuel Cells and Hybrid Systems.

		Interna Assessn	nent	Max- marks	ge	vera arks	Marks a Scale-D	own	Final Marks
m 1	IA	IA-1 (1.5	5 hrs)	40		40	30		50
Theory Component		IA-2 (1.5	5 hrs)	40	_				(Passing standard 40% i.e.,
oomponono		IA-3 (1.5	5 hrs)	40					20 marks
	Assignment	A1 (1 hr)	20		20	20		
	ААТ	A Semester En		Examination		n (SE)		
Examination	Duration-3	Hrs				Max.	Marks	100	
				Max. Ma	rks	Max	. Marks	Final	marks
	No. of modul	es	05	200					
	Questions/M	odule	02	40					50
Theory	Marks/Quest	Marks/Question		20			100	(]	Passing
Component	No. of Questi answered/m		01	20					dard 40% 20 marks
	No. of Questi be answered		05	100					

Textbooks:

1. Non-Conventional Energy Resources by B. H. Khan, McGraw Hill, 2nd Edition 2017.

2. Non-Conventional Sources of Energy by Rai G. D Khanna, Publishers, 4th Edition, 2009

References:

1. Non-Conventional Energy Resources by ShobhNath Singh, Pearson, 1st Edition, 2015.

2. Solar Energy – Principles of Thermal Collections and Storage by S.P. Sukhatme, J.K.Nayak, McGraw Hill, 3rd Edition, 2008

Version 1

Department of Humanities and Social Sciences					
Choice Based Credit System (CBCS)					
SEMESTER – I					
Communicative English (1:0:0) 1					
(Common to all Branches)					
(Effective from the academic year 2022-2023)					
Course Code	BENGK106	CIE Marks	50		
Teaching Hours/Week (L: T:P)	1:0:0	SEE Marks	50		
Total Number of Lecture Hours	15	Exam Hours	01		

Course objectives:

This course will enable students to

- 1. Familiarise with basic English Grammar and Communication Skills in general.
- 2. Identify the nuances of phonetics, intonation and enhance pronunciation skills
- 3. Enhance English vocabulary and language proficiency for better communication skills.
- 4. Learn about Techniques of Information Transfer through presentation.

Module – 1

Preamble: Importance of English grammar, Vocabulary and Communication skills enhancing the employability skills of Engineering graduates.

Introduction to Communicative English: Communicative English: Fundamentals of Communicative English, Process of Communication, Barriers to Effective Communicative English Different Styles and levels in Communicative English, Intrapersonal and Interpersonal Communication Skills. **3 hours**

Module – 2

Introduction to Phonetics: Phonetic Transcription, Sounds in Phonetics (44 sounds), Diphthongs, Consonants and Vowels, Pronunciation, Common errors in pronunciation, Word accent, Voice modulation, Tone and pitch, Mother Tongue Influence, Various Techniques for Neutralization of Mother Tongue Influence. **3 hours**

Module - 3

Introduction to English Grammar: Basic English Grammar: Parts of Speech, Use of Articles and Prepositions. Word Formation, One Word Substitution, Question Tags, Strong and weak forms of Words, Affixes (prefix and Suffix)- Exercises 3 hours

Module - 4

Basic English Communicative Grammar and Vocabulary:Introduction to Vocabulary, All typesof Vocabulary -Exercises, Tense and Types of Tenses, The Sequence of Tenses (rules in use)Exercises on Tenses, Abbreviations, Contractions, Word Pairs (Minimal Pairs)3 hours

Module-5

Communication Skills for Employment: Information Transfer: Oral Presentation and its Practices. Difference between Extempore\ Public Speaking, Communication Guidelines, Reading and Listing Comprehension-Exercises. 3 hours **Course outcomes:** The students will be able to:

- 1. Understand and apply basic English grammar for effective communication.
- 2. Identify the nuances of phonetics, intonation and enhance pronunciation skills.
- 3. Understand and use all types of English vocabulary and language proficiency.
- 4. Enhance their knowledge about techniques of information transfer through presentations.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). The minimum passing mark for the SEE is 35% of the maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation (CIE):

Two Unit Tests each of 30 Marks (duration 01 hour)

• First test after the completion of 30-40 % of the syllabus

• Second test after completion of 80-90% of the syllabus

One Improvement test before the closing of the academic term may be conducted if necessary. However best two tests out of three shall be taken into consideration

Two assignments each of 20 Marks

The teacher has to plan the assignments and get them completed by the students well before the closing of the term so that marks entry in the examination portal shall be done in time. Formative (Successive) Assessments include Assignments/Quizzes/Seminars/ Course projects/Field surveys/ Case studies/ Hands-on practice (experiments)/Group Discussions/ others. The Teachers shall choose the types of assignments depending on the requirement of the course and plan to attain the Cos and Pos (to have a less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course). CIE methods /test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

The sum of two tests, two assignments, will be out of 100 marks and will be scaled down to 50 marks Semester End Examinations (SEE)

SEE paper shall be set for **50 questions, each of the 01 mark**. The pattern of the **question paper is MCQ** (multiple choice questions). The time allotted for SEE is **01 hour**. The student must secure a minimum of 35% of the maximum marks for SEE

Textbooks

- 1. Meenakshi Raman and Sangeeta Sharma, Technical Communication Principles and Practice, Oxford Publications, 3rd Edition, 2015
- 2. Sanjay Kumar and Pushpa Lata, Communication Skills, Oxford University Press,
- 3. A Textbook of English Language Communication Skills, (ISBN-978-81-955465-2-7), Published by Infinite Learning Solutions, Bengaluru 2022.

References

- 1. Gajendra Singh Chauhan, Technical Communication Cengage Learning India Pvt Limited, Latest Revised Edition, 2019
- 2. Michael Swan, Practical English Usage, Oxford University Press, 2016
- 3. N.P.Sudharshana and C.Savitha, English for Engineers, Cambridge University Press ,2018

Version 1

	4 CTT		1		
-	nt of Humanities and e Based Credit Syste				
	SEMESTER – I/				
ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ Samskrutika Kannada (1:0:0):1					
(Effective	from the academic y	ear 2022-2023)			
ವಿಷಯ ಸಂಕೇತ Course Code	BKSKK107/207	ನಿರಂತರ ಆಂತರಿಕ ಮೌಲ್ಯಮಾಪನದ	50		
		ಅಂಕಗಳು CIE Marks			
ಒಂದು ವಾರಕ್ಕೆ ಬೋಧನಾ ಅವಧಿ Teaching	1:0:0	, ಸೆಮಿಸ್ಟರ್ ಅಂತ್ಯದ ಪರೀಕ್ಷೆಯ ಅಂಕಗಳು			
hours/Week (L: T:P)		SEE Marks	50		
ಒಟ್ಟು ಬೋಧನಾ ಅವಧಿ Total Number of	15	ಪರೀಕ್ಷೆಯ ಅವಧಿ Exam Hours	01		
contact hours					
Course Objectivies: ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ	ತ ಪಠ್ಯ ಕಲಿಕೆಯ ಉದ್ದೇಶ	ಸಗಳು:			
1. ಪದವಿ ವಿದ್ಯಾರ್ಥಿಗಳಾಗಿರುವುದರಿಂದ ಕನ್ನ	ಡ ಭಾಷೆ, ಸಾಹಿತ್ಯ ಮತ್ತು	್ಶ ಸಂಸ್ಕೃತಿಯ ಪರಿಚಯ ಮಾಡಿಕೊಡ	ಖವುದು.		
2. ಕನ್ನಡ ಸಾಹಿತ್ಯದ ಪ್ರಧಾನ ಭಾಗವಾದ ಆಧುನಿಕ ಪೂರ್ವ ಮತ್ತು ಆಧುನಿಕ ಕಾವ್ಯಗಳನ್ನು ಪರಿಚಯಿಸುವುದು.					
3. ವಿದ್ಯಾರ್ಥಿಗಳಲ್ಲಿ ಸಾಹಿತ್ಯ ಮತ್ತು ಸಂಸ್ಕೃತಿಯ	ು ಬಗ್ಗೆ ಅರಿವು ಹಾಗೂ	ಆಸಕ್ತಿಯನ್ನು ಮೂಡಿಸುವುದು.			
4. ತಾಂತ್ರಿಕ ವ್ಯಕ್ತಿಗಳ ಪರಿಚಯವನ್ನು ಹಾಗೂ ಅವರುಗಳು ಸಾಧಿಸಿದ ವಿಷಯಗಳನ್ನು ಪರಿಚಯಿಸುವುದು.					
5. ಸಂಸ್ಕೃತಿಕ, ಜನಪದ ಹಾಗೂ ಪ್ರವಾಸ ಕಥ	ನನಗಳ ಪರಿಚಯ ಮಾಡಿ	ಕೊಡುವುದು.			
	ಘಟಕ–1				
ಕನ್ನಡ ಸಂಸ್ಕೃತಿ ಮತ್ತು ಭಾಷೆ ಕುರಿತಾದ ಲೇಖ	ನಗಳು:				
ಕರ್ಣಾಟ ಸಂಸ್ಕೃತಿ – ಹಂಪ ನಾಗರಜಯ	ಬ್ಯ				
ಕರ್ನಾಟಕ ಏಕೀಕರಣ: ಒಂದು ಅಪೂರ್ವ ಚಂ	•	5			
ಆಡಳಿತ ಭಾಷೆಯಾಗಿ ಕನ್ನಡ–ಡಾ.ಎಲ್.ತಿಮ್ಮೇಶ ಮತ್ತು ಪ್ರೊ.ವಿ.ಕೇಶವಮೂರ್ತಿ 3 ಗಂಟೆಗಳು			3 ಗಂಟೆಗಳು		
ಫ್ <i>ಟಕ</i> –2					
ಆಧುನಿಕ ಪೂರ್ವದ ಕಾವ್ಯ ಭಾಗ:					
ವಚನಗಳು–ಬಸವಣ್ಣ, ಅಕ್ಕಮಹಾದೇವಿ, ಆಯ್ಟ	್ದಕ್ಕಿ ಮಾರಯ್ಯ, ಜೇಡರದ	ಗಾಸಿಮಯ್ಯ, ಆಯ್ದಕ್ಕಿ ಲಕ್ಕಮ್ಮ			
ಕೀರ್ತನೆಗಳು-ಅದರಿಂದೇನು ಫಲ ಇದರಿಂದ	ವೇನು ಫಲ–ಪುರಂದರ <u>ಣ</u>	ದಾಸರು ತಲ್ಲಣಿಸದಿರು ಕಂಡ್ಯ ತಾ	ಳು ಮನವೇ–		
ಕನಕದಾಸರು		-			
ತತ್ವಪದಗಳು: ಸಾವಿರ ಕೊಡಗಳ ಸುಟ್ಟು	, – ಶಿಶುನಾಳ ಶರೀಫ		3 ಗಂಟೆಗಳು		
ಘಟಕ-3					

ಆಧುನಿಕ ಕಾವ್ಯ ಭಾಗ:	
ಡಿ.ವಿ.ಜಿ.ಯವರ ಮಂಕು ತಿಮ್ಮನ ಕಗ್ಗದಿಂದ ಆಯ್ದ ಕೆಲವು ಭಾಗಗಳು.	
ಕುರುಡು ಕಾಂಚಾಣ: ದಾ. ರಾ. ಬೇಂದ್ರೆ	
ಹೊಸ ಬಾಳಿನ ಗೀತೆ: ಕುವೆಂಪು	3 ಗಂಟೆಗಳು
ಘಟಕ–4	
ತಾಂತ್ರಿಕ ವ್ಯಕ್ತಿಗಳ ಪರಿಚಯ:	
ಡಾ.ಸರ್.ಎಂ.ವಿಶ್ವೆಶ್ವರಯ್ಯ:ವ್ಯಕ್ತಿ ಮತ್ತು ಐತಿಹ್ಯ–ಎ.ಎನ್.ಮೂರ್ತಿರಾವ್	
ಕರಕುಶಲ ಕಲೆಗಳು ಮತ್ತು ಪರಂಪರೆಯ ವಿಜ್ಞಾನ–ಕರೀಗೌಡ ಬೀಚನಹಳ್ಳಿ	3 ಗಂಟೆಗಳು
ಘಟಕ–5	
ಸಂಸ್ಕೃತಿಕ, ಜನಪದ ಕಥೆ ಮತ್ತು ಪ್ರವಾಸ ಕಥನ:	
ಯುಗಾದಿ : ವಸುಧೇಂದ್ರ	
ಮೆಗಾನೆ ಎಂಬ ಗಿರಿಜನ ಪರ್ವತ: ಹಿ.ಚಿ.ಬೋರಲಿಂಗಯ್ಯ	3 ಗಂಟೆಗಳು
Course outcome (course skills set)	
ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ (BKSKK107/207) ಪಠ್ಯ ಕಲಿಕೆಯ ನಂತರ ವಿದ್ಯಾರ್ಥಿಗಳಲ್ಲಿ:	
1. ಕನ್ನಡ ಭಾಷೆ, ಸಾಹಿತ್ಯ ಮತ್ತು ಕನ್ನಡದ ಸಂಸ್ಕೃತಿಯ ಕುರಿತು ಅರಿವು ಮೂಡಿರುತ್ತ	ದೆ.
2. ಕನ್ನಡ ಸಾಹಿತ್ಯದ ಆಧುನಿಕ ಪೂರ್ವ ಮತ್ತು ಆಧುನಿಕ ಕಾವ್ಯಗಳನ್ನು ಸಾಂಕೇತಿಕವ	
ಮತ್ತು ಜ್ಞಾನಕ್ಕೆ ಸ್ಪೂರ್ತಿ ಮೂಡುತ್ತದೆ.	63
3. ವಿದ್ಯಾರ್ಥಿಗಳಲ್ಲಿ ಸಾಹಿತ್ಯತ ಮತ್ತು ಸಂಸ್ಕೃತಿಯ ಬಗ್ಗಡೆ ಅರಿವು ಹಾಗೂ ಆಸಕ್ತಿಯ	ನ್ನು ಹೆಚ್ಚಾಗುತ್ತದೆ.
4. ತಾಂತ್ರಿಕ ವ್ಯಕ್ತಿಗಳ ಪರಿಚಯ ಹಾಗೂ ಅವರುಗಳ ಸಾಧಿಸಿದ ವಿಷಯಗಳನ್ನು ತಿಳಿದ	- ~ ~ ~ ~ ~
ವ್ಯಕ್ತಿಗಳ ಬಗ್ಗೆ ತಿಳಿದುಕೊಳ್ಳಲು ಕೌತುಕತೆ ಹೆಚ್ಚಾಗುತ್ತದೆ.	٩.

5. ಸಾಂಸ್ಕೃತಿಕ, ಜನಪದ ಹಾಗೂ ಪ್ರವಾಸ ಕಥನಗಳ ಪರಿಚಯ ಮಾಡಿಕೊಡುವುದು.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). The minimum passing mark for the SEE is 35% of the maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation (CIE):

Two Unit Tests each of 30 Marks (duration 01 hour)

• First test after the completion of 30-40 % of the syllabus

• Second test after completion of 80-90% of the syllabus

One Improvement test before the closing of the academic term may be conducted if necessary. However best two tests out of three shall be taken into consideration

Two assignments each of 20 Marks

The teacher has to plan the assignments and get them completed by the students well before the closing of the term so that marks entry in the examination portal shall be done in time. Formative (Successive) Assessments include Assignments/Quizzes/Seminars/ Course projects/Field surveys/ Case studies/ Hands-on practice (experiments)/Group Discussions/ others. The Teachers shall choose the types of assignments depending on the requirement of the course and plan to attain the Cos and Pos (to have a less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course). CIE methods /test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

The sum of two tests, two assignments, will be out of 100 marks and will be scaled down to 50 marks Semester End Examinations (SEE)

SEE paper shall be set for **50 questions, each of the 01 mark**. The pattern of the **question paper is MCQ** (multiple choice questions). The time allotted for SEE is **01 hour**. The student must secure a minimum of 35% of the maximum marks for SEE

Textbook: ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ ಡಾ.ಹಿ.ಚೆ ಬೋರಲಿಂಗಯ್ಯ ಮತ್ತು ಡಾ. ಎಲ್. ತಿಮ್ಮೇಶ, ಪ್ರಸಾರಾಂಗ ವಿಶ್ವೇಶ್ವರಯ್ಯ ತಾಂತ್ರಿಕ ವಿಶ್ವವಿದ್ಯಾಲಯ, ಬೆಳಗಾವಿ

Version 1

		Versie
-	nent of Humanities and Social Sciences	
Ch	oice Based Credit System (CBCS) SEMESTER – I/II	
ਾਸਤੇ ਤਰਕ	Balake Kannada (Kannada for Usage) (1:0:0):1	
ಬಳಕ ಕನ್ನಡ		
(Effect	(Common to all Branches) ive from the academic year 2022-2023)	
Course Code	BKBKK107/207 CIE Ma	urks 50
Teaching Hours/Week (L: T:P)	1:0:0 SEE Ma	
Total Number of Lecture Hours	15 Exam H	
ಬಳಕೆ ಕನ್ನಡ ಪಠ್ಯ ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು (Col		
-, U w	ding the necessity of learning local language for c	omfortable and
healthy life.	ung the necessity of learning local language for e	onnor table and
-	n and understand the Kannada language properly	V.
	annada language as per requirement.	
• To train the learners for co	rrect and polite conservation.	
	Module – 1	
Introduction, Necessity of learning a	local language. Methods to learn the Kannada langu	lage.
Easy learning of a Kannada Languag	e: A few tips. Hints for correct and polite conversation	ion, Listening and
Speaking Activities.Key to Transcription	ption.ವೈಯಕ್ತಿಕ, ಸ್ವಾಮ್ಯಸೂಚಕ/ಸಂಬಂಧಿತ ಸರ್ವನಾಮಗಳು ಮತ್ತು	ಶ ಪ್ರಶ್ನಾರ್ಥಕ ಪದಗಳು
Personal Pronouns, Possessive Form		3 hours
		• •••••
	Module – 2	
ನಾವುಪದಗಳ ತಂಬಂದಾರ್ಥಕ ರೂಪಗಳು ತಂ		essive forms of
	-	
	ative noun. ಗುಣ, ಪರಿಮಾಣ ಮತ್ತು ವರ್ಣಬಣ್ಣ ವಿಶೇಷಣಗಳು,	-
Qualitative, Quantitative and Colou	r Adjectives, Numerals. ಕಾರಕ ರೂಪಗಳು ಮತ್ತು ವಿಭಕ್ತಿ ಪ್ರತ	ತ್ಯಯಗಳು – ಸಪ್ತಮಿ
ವಿಭಕ್ತಿ ಪ್ರತ್ಯಯ (ಅ, ಅದು, ಅವು, ಅಲ್ಲಿ) Predi	ctive Forms, Locative Case.	3 hours
	Module – 3	
	ಖ್ಯಾವಾಚಕಗಳು Dative cases and Numerals. ಸಂಖ್ಯಾಗುಣ	_
ಬಹುವಚನ ನಾಮರೂಪಗಳು Ordinal num	erals and Plural makers. ನ್ಯೂನ/ನಿಷೇದಾರ್ಥಕ ಕ್ರಿಯಾಪದಗ	ಳು ಎ ುತ್ತು ವರ್ಣ
ಗುಣವಾಚಕಗಳು Defective /Negative Ve	erbs and Colour Adjectives.	8 hours
	Module – 4	
	ಒತ್ತಾಯ ಅರ್ಥರೂಪ ಪದಗಳು ಮತ್ತು ವಾಕ್ಯಗಳು Permissio	on, Commands,
encouraging and urging words (Im	perative words and sentences). ಸಾಮಾನ್ಯ ಸಂಭಾಷಣೆಗಳ	ತಲ್ಲಿ ದ್ವಿತೀಯ ವಿಭಕ್ತಿ
	ಳು Accusative Cases and Potential Forms use	
-0 -	ಸಹಾಯಕ ಕ್ರಿಯಾಪದಗಳು, ಸಂಭಾವ್ಯಸೂಚಕ ಮತ್ತು ನಿಷೇಧಾರ್ಥ	
	Corresponding Future and Negation Verbs.	
	ಯಗಳು ಮತ್ತು ನಿಷೇದಾರ್ಥಕ ಪದಗಳ ಬಳಕೆ Comparitive	
Identification and Negation words.	Module – 5	3 hours
		a and varba
	ದಗಳ ವಿವಿಧ ಪ್ರಕಾರಗಳು, Different types of tense, tim	
ಬ್, ಆ, -ಲ, -ಇಲ, -ಆಗ, -ಅಲ್ಲ, -ಗ್,	, -ಕ್, ಇದೆ, ಕ್ರಿಯಾ ಪ್ರತ್ಯಯಗಳೊಂದಿಗೆ ಭೂತ, ಭವಿಷ್ಯತ್ ಮತ್ತು	, ಎರ್ತಿ ಮಾನಿ ಕಾಲ

ವಾಕ್ಯ ರಚನೆ Formation of Past, Future and Present Tense Sentences with Verb Forms. ಕರ್ನಾಟಕ ರಾಜ್ಯ ಮತ್ತು

ರಾಜ್ಯದ ಬಗ್ಗೆ ಕುರಿತಾದ ಇತರೆ ಮಾಹಿತಿಗಳು Karnataka state and general information about the state. ಕನ್ನಡ ಭಾಷೆ ಮತ್ತು ಸಾಹಿತ್ಯ Kannada Language and Literature. ಭಾಷೆ ಕಲಿಯಲು ಏನನ್ನು ಮಾಡಬೇಕು ಮತ್ತು ಮಾಡಬಾರದು Do's and Dont's in Learning a Language

3 hours

ಬಳಕೆ ಕನ್ನಡ ಪಠ್ಯ ಕಲಿಕೆಯಿಂದ ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ಆಗುವ ಅನುಕೂಲಗಳು ಮತ್ತು ಫಲಿತಾಂಶಗಳು: Course outcomes:

At the end of the Course, The Students will be able to

- Understand the necessity of learning of local language for comfortable life. 1.
- 2. Listen and understand the Kannada language properly.
- 3. Speak, read and write Kannada language as per requirement.
- 4. Communicate (converse) in Kannada language in their daily life with Kannada speakers.
- 5. Speak in polite conservation

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). The minimum passing mark for the SEE is 35% of the maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation (CIE):

Two Unit Tests each of 30 Marks (duration 01 hour)

• First test after the completion of 30-40 % of the syllabus

• Second test after completion of 80-90% of the syllabus

One Improvement test before the closing of the academic term may be conducted if necessary. However best two tests out of three shall be taken into consideration

Two assignments each of 20 Marks

The teacher has to plan the assignments and get them completed by the students well before the closing of the term so that marks entry in the examination portal shall be done in time. Formative (Successive) Assessments include Assignments/Quizzes/Seminars/ Course projects/Field surveys/ Case studies/ Handson practice (experiments)/Group Discussions/ others. The Teachers shall choose the types of assignments depending on the requirement of the course and plan to attain the Cos and Pos (to have a less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course). CIE methods /test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

The sum of two tests, two assignments, will be out of 100 marks and will be scaled down to 50 marks Semester End Examinations (SEE)

SEE paper shall be set for **50 questions, each of the 01 mark**. The pattern of the **question paper is MCQ** (multiple choice questions). The time allotted for SEE is **01 hour**. The student must secure a minimum of 35% of the maximum marks for SEE

Textbook:

ಬಳಕೆ ಕನ್ನಡ ಲೇಖಕರು: ಡಾ. ಎಲ್. ತಿಮ್ಮೇಶ ಪ್ರಸಾರಾಂಗ, ವಿಶ್ವೇಶ್ವರಯ್ಯ ತಾಂತ್ರಿಕ ವಿಶ್ವವಿದ್ಯಾಲಯ, ಬೆಳಗಾವಿ

All Engineering Departments Choice Based Credit System (CBCS) SEMESTER - I/II Innovation and Design Thinking (0:2:0)1 (Common to all Branches) (Effective from the academic year 2022 -2023)					
Teaching Hours/Week (L:T:P)	0:2:0	SEE Marks	50		
Total Number of Lecture Hours	25	Exam. Hours	01		
Course objectives:			1		
services. 4. Demonstrate the fundamen development. 5. To discuss the methods of in	-	-			
	Module – 1				
Introduction to Design Thinking: thinking: principles of design thinkin Philosophy of Design thinking, rules Frame work of Design Thinking Psychological and neural bases of cree How to understand the problem: H Understanding of the problem: The PESTEL-Analysis. Case studies on PESTEL-Analysis.	ng, the process of design of design thinking. Aesthetics and creat eativity, a definition and low to analyse problems	n thinking, double-dian ivity as design thinki framework of design th , Search field determin	nond model. The ng mechanisms, ninking. ation.		
Module – 2					
How to Observe: Observation Phase Design: Behavioural Mapping and Tr How to Define the Problem: Point-obe be done, Means-end approach. Ideate Phase: The creative process, s	acking, Empathy Map, I of-view phase, Characte	Heuristic Evaluation, C ristics of target group,	ustomer Journey. Persona, Jobs-to-		
for brain storming, mind mapping, ru Case studies on Empathetic design.	les for mind mapping, s	ynectics.	(5 Hours)		

Module – 3 Evaluation of ideas: Checklists/Proc-Cons lists, assessment areas of innovations, PPCO method, SWOT analysis for ideas, theory of inventive problem solving(TRIZ), principle of evolution, innovation checklist, resource analysis. **Real-Time Design Interaction:** Introduction, improving design process instrumentation, real-time design research instrument. Collaboration in digital space: Creativity across distances, analysing design thinking working modes, evaluating existing tool for remote collaboration and digital whiteboard. Case studies on SWOT analysis. (5 Hours) Module – 4 Innovation Process: Model Unified innovation process model for engineering designers and managers, Feedback pathways and gates: designer and reviewer initiated. Strategic innovations: Design thinking approach: - Growth, predictability, strategic foresight, change, sense making, value redefinition, extreme competition, experience design standardization, creative culture, rapid prototyping, strategy and organization and business model design. **Innovation Culture**: Nested view of design thinking and practice, national culture and design practice, method, Insights: culture and design, methodological insights. (5 Hours) Module – 5 **Prototype and Testing:** Prototype phase, storyboarding, storytelling, test phase, tips for prototype testing, tips for interviews, tips for survey, requirements for space and materials, Agility for design thinking, the Scrum guide, How to conduct workshop, MVP and prototyping. Efficacy of prototyping: The efficacy of prototyping under time constraints, introduction, method, materials and design task, participants, procedure, results, participant creations. interviews. Business process modelling: Introduction, process models mediate communication, research question and iterating ideas. (5 Hours) **Course Outcomes:** The students will be able to: 1. Demonstrate the concept of design thinking for real world problems. 2. Illustrate empathetic design for potential customers. 3: Describe define and ideate phase in design thinking based on user's requirements. 4: Discuss innovation principle and culture for products and services. 5: Illustrate prototype and testing phase for products and services. **Assessment Methods CIE Components** (50 Marks) Two Unit Tests each of 30 Marks (duration 01 hour) Internal Assessments Tests (Two tests X 30Marks) : 60 Marks : 20 Marks Assignments : 20 Marks Course project

The sum of two test, two assignments, will be out of 100 marks and will be scaled down to 50 marks

Semester-End Examination

- SEE question paper will be set for 50 questions of each of 01 marks
- The pattern of the question paper is MCQ.

Assessment Details (both CIE and SEE):

- The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%.
- The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50).
- The minimum passing mark for the SEE is 35% of the maximum marks (18 marks out of 50).
- A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.
- 1. Textbooks:
- 2. Christian Mueller-Roterberg, Handbook of Design Thinking, Tips & Tools for how to design thinking, Kindle Direct Publishing, 2018.
- A Nil Hasso Plattner, Christoph Meinel and Larry Leifer, Design Thinking: Understand Improve – Apply, Springer, 2011.
- 4. References:
- Idris Mootee, Design Thinking for Strategic Innovation: What They Can't Teach You at Business or Design School, John Wiley & Sons 2013.
- 6. Jeanne Liedtka, Andrew King, Kevin Bennett, Solving Problems with Design Thinking -Ten Stories of What Works, Columbia Business School Publishing, 2013.
- Gavin Ambrose Paul Harris, Basics of Design Thinking, AVA Publishing, Switzerland, 2009.
 Web links and Video Lectures (e-Resources):
- 1. www.tutor2u.net/business/presentations/./productlifecycle/default.html
- 2. https://docs.oracle.com/cd/E11108_02/otn/pdf/. /E11087_01.pdf
- 3. www.bizfilings.com > Home > Marketing > Product Developmen
- 4. https://www.mindtools.com/brainstm.html
- 5. https://www.quicksprout.com/. /how-to-reverse-engineer-your-competit
- 6. www.vertabelo.com/blog/documentation/reverse-engineering

- 8. https://support.microsoft.com/en-us/kb/273814
- 7. https://support.google.com/docs/answer/179740?hl=en
- 8. https://www.youtube.com/watch?v=2mjSDIBaUlM
- 9. thevirtualinstructor.com/foreshortening.html
- 10. https://dschool.stanford.edu/.../designresources/.../ModeGuideBOOTCAMP2010L.pdf
- **11.** https://dschool.stanford.edu/use-our-methods/ 6. https://www.interactiondesign.org/literature/article/5-stages-in-the-design-thinking-process
 - 7.
- **12.** http://www.creativityatwork.com/design-thinking-strategy-for-innovation/ 49 8.
- 13. https://www.nngroup.com/articles/design-thinking/9.
- **14.** https://designthinkingforeducators.com/design-thinking/10.
- 15. www.designthinkingformobility.org/wp-content/.../10/NapkinPitch_Worksheet.pdf
- 16. NPTL : Design Thinking A Primer Course (nptel.ac.in)

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

http://dschool.stanford.edu/dgift/