

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT (Autonomous Institute affiliated to VTU, Belagavi, Approved byAICTE New Delhi)

Yelahanka, Bengaluru 560064

Bachelor of Engineering

Department of Computer Science and Engineering

V Semester Scheme & Syllabus 2022 Scheme Effective from the AY 2024-25 Approved in the BoS meeting held on 02/09/2024

Vision and Mission of the Department

Vision

Emerge as centre of learning in the field of Computer Science & Engineering with technical competency to serve the society.

Mission

To provide excellent learning environment through balanced curriculum, best teaching methods, innovation, mentoring and industry institute interaction.

Program Educational Objectives (PEOs)

PEOs	
PEO1	Successful professional career in Computer Science & Technology.
PEO2	Pursue higher studies and research for advancement of knowledge in IT industry.
PEO3	Exhibit professionalism and teamwork with social concern.

Program Specific Outcomes (PSOs)

PSOs	
PSO-1	Apply the Knowledge of Computer technology to develop software solutions.
PSO-2	Design and develop hardware systems, manage and monitor resources in the product life cycle.

ಬಿ.ಎಂ.ಎಸ್. ತಾಂತ್ರಿಕ ಮತ್ತು ವ್ಯವಸ್ಥಾಪನಾ ಮಹಾವಿದ್ಯಾಲಯ

BMS Institute of Technology and Management

(An Autonomous Institution, Affiliated to VTU Belagavi) Avalahalli, Doddaballapur Main Road, Bengaluru, Karnataka – 560064

Ref.: BMSIT&M/Exam/2023-24/ 04

Date: 21.09.2024

CONTINUOUS INTERNAL EVALUATION (CIE) AND SEMESTER END EXAMINATION (SEE) PATTERN

(Applicable to UG students admitted from the 2022 batch, effective from the Academic year 2024-25 onwards)

The UG students admitted from the 2022 batch onwards are hereby informed to note the following regarding Continuous Internal Evaluation and Semester End Examination pattern:

- The Weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Examination (SEE) is 50%.
- The Minimum passing mark for the CIE is 40% of the Maximum marks (i.e. 20 marks out of 50) and for the SEE minimum passing mark is 35% of the Maximum marks (i.e. 18 out of 50 marks).
- A student will be declared to have passed the course if they secure a minimum of 40% (i.e. 40 marks out of 100) in the combined total of the CIE and SEE.

The following tables summarize the CIE and SEE Patterns for the courses of various credits:

Evaluation Type		Internal Assessme nts (IAs)		Marks to be scaled down to	Min. Marks to be Scored	Evaluation Details		
	CIE - Internal Assessment	CIE – Test 1 (1.5 hr)	40	20		The sum of the two internal assessment tests will be 80 Marks		
Theory Component	(IA) Tests	CIE – Test 2 (1.5 hr)	40	20		and the same shall be scaled down to 20 Marks.		
	CIE – CCA (Comprehens ive Continuous Assessment)	CCA	10	10		Any one assessment method can be used from the list appended below.		
	Total CIE 7	Total CIE Theory		30	12			
Practical Component	CIE - Practical		30	10	-	Each laboratory experiment is to be		

INTEGRATED PROFESSIONAL COMPETENCE COURSE (IPCC) COURSES 4 OR 3 CREDITS

Page 1 6

		in the second	-1.0		assessed for 30 Marks using appropriate rubrics.
	CIE Practical Test	20	10	-	One test after all experiments to be conducted for 20 Marks
	Total CIE Practical		20	08	
Total (CIE Theory + Practical		50	20	
	SEE	100	50	18	SEE exam is a theory exam, conducted for 100 Marks , scored marks are scaled down to 50 Marks .
	CIE + SEE	-	100	40	

Note: The assessment of the laboratory component for the IPCC courses shall be restricted to CIE only.

Evaluation Type		Internal Assessments (IAs)	Test/ Exam Marks Condu cted for	Marks to be scaled down to	Min. Marks to be Scored	Evaluation Details
	CIE – IA	CIE – Test 1 (1.5 hr)	40	20	N.	The sum of the two internal assessment tests will be 80
Theory	Tests	CIE – Test 2 (1.5 hr)	40	30		Marks and the same will be scaled down to 30 Marks .
Component	CIE - CCAs	CCA	20	20	-	Any Two assessment methods can be used from the list. If it is project-based, one CCA shall be given.
	Total	CIE Theory		50	20	
	SEE		100	50	18	SEE is a theory exam, conducted for 100 Marks , scored marks are scaled down to 50 Marks .
	CIE + SEI	C		100	40	

		l 01 CREDIT – M	NON-IPCC		OTION TY	ZDE
Evaluat	ion Type	Internal		Marks to be scaled down to	Min. Marks to be Scored	Evaluation Details
	CIE – IA	CIE – Test 1 (1 hr)	40			The question paper pattern for this course shall be an MCQ of 1 or 2 Marks (s). The questions with 2 Marks can be framed
Continu ous Internal Evaluati on Compon ent	CIE – IA Tests (MCQs)	Tests	40	40		based on a higher Bloom's level. The sum of the two internal assessment tests will be 80 Marks , and the same will be scaled down to 40 Marks .
	CIE - CCAs	CCA	10	10	-	Any One Assessment method can be used from the list provided below.
	Тс	otal CIE		50	20	
s	EE (MCQ	Туре)		50	18	The question paper pattern for this course shall be an MCQ of 1 or 2 Marks (s). The questions with 2 Marks can be framed based on higher Bloom's level. MCQ-type question papers of 50 questions with each question of a 01 Mark , the
	CIE + S	EE		100	40	examination duration is 01 hour.

PROFESSIONAL CORE COURSE LABORATORY (PCCL) / ABILITY ENHANCEMENT COURSE LABORATORY (AEC)

	1	01 CREI		1	1
Evaluation Type	Internal Assessments (IAs)	Test/ Exam Marks Conduct ed for	Marks to be scaled down to	Min. Marks to be Scored	Evaluation Details
	CIE - Practical	30	30	2 2 2	Each laboratory experiment is to be evaluated for 30 Marks using appropriate rubrics.
Continuous Internal Evaluation	CIE - Practical Test	50	20		One test after all experiments is to be conducted for 50 Marks and to be scaled down to 20 Marks .
	Total CIE	-	50	20	
Semester En	d Examination	100	50	18	SEE to be conducted for 100 Marks .
CIE	+SEE	100		40	

	uation ype	Internal Assessments (IAs)	Test/ Exam Marks Condu cted for	Marks to be scaled down to	Min. Marks to be Scored	Evaluation Details		
	CIE – IA Tests	CIE – Test 1 (1.5 hr)	40			The sum of the two internal assessment tests		
Theor		CIE – Test 2 (1.5 hr)	40	30		will be 80 Marks and the same will be scaled down to 30 Marks .		
y Comp onent	CIE - CCAs	CCA	20	20	-	Any Two assessment methods can be used from the list If it is project based, one CCA shall be given.		
	Total	CIE Theory		50	20			

Page 4 | 6

CIE + SEE		100	40	Det 1-1
SEE	100	50	18	SEE is a theory exam, conducted for 100 Marks for 02 Hours duration, scored marks are scaled down to 50 Marks.

COMPUTER AIDED ENGINEERING DRAWING (BCEDK103/BCEDK203) 3 CREDIT

Eva	luation Type	Topics/ Modules	Computer Printout	Preparatory Sketch	Max Marks	Total Marks	Marks to be Scaled Down to	Min Marks to Pass	
		Projection of Points	10	05	15				
		Projection of Lines	10	10	20		ale give real		
	Sketch Book and CAD Modelling	Projection of Planes	20	15	35				
		Projection of Solids	40	20	60	200	20		
CIE		Isometric Projections	20	15	35				
		Development of lateral surfaces	20	15	35				
	Test 1	Module 1 & 2	24	06	30	70			
		Module 3	32	08	40		20	-	
	Test 2	Module 3	32	08	40	70			
	Iest 4	Module 4	24	06	30	70	4		
	CCA 1	Module 5	08	02	10	10	10		
	CCA 2	Module 5	08	02	10	10	10	-	
		50	20						
		Module 1 & 24 06		06	30	100			
SEE		Module 3	32	08	40	100	50	18	
		Module 4	24	06	30				
		C	IE + SEE	and the second			100	40	

Eva	aluation Type	Topics/ Modules	Computer Printout	1 CREDIT Preparatory Calculations / Sketch	Max Marks	Total Marks	Marks to be Scaled Down to	Min Marks to Pass
	Sketch Book	Module 1	60	30	90			
	and CAD Modelling	Module 2	40	20	60	200	20	
		Module 3	40	10	50			
OTE	mart 1	Module 1	20	10	30	60		
CIE	Test 1	Module 2	20	10	30	60	00	-
1.2		Module 1	20	10	30	60	20	
	Test 2	Module 3	20	10	30	60		
	CCA	Module 1	30	10	40	40	10	
			50	20				
		Module 1	30	10	40			
SEE		Module 2 20		10	30	100	50	18
		Module 3		10	30			
			CIE + SEE				100	40

Learning Activities for CCAs:

A faculty member may choose the following CCAs based on the needs of the course:

- 1. Course project
- 2. Literature review
- 3. MOOC
- 4. Case studies
- 5. Tool exploration
- 6. GATE-based aptitude test
- 7. Open book tests
- 8. Industry integrated learning
- 9. Analysis of Industry / Technical / Business reports
- 10. Programming assignments with higher Bloom level
- 11. Group discussions
- 12. Industrial / Social / Rural projects

COE 21/09/2024

21/9/2024

Principal

Copy To:

- 1. The Vice-Principal, Deans, HoDs, and Associate HoDs
- 2. All faculty members and students of 2022, 2023, and 2024 batch.
- 3. Examination Section

Dean - AA

BMS INSTITUTE OF TECHNOLOGY & MANAGEMENT

(Autonomous Institution Affiliated to VTU, Belagavi)

B. E. in Computer Science and Engineering

Scheme of Teaching and Examinations – 2022 Scheme

Outcome-Based Education (OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2024-25 onwards)

V Semester

				Teaching Department	C	redits	Distril	oution		Exa	aminatio	n	
Sl. No.	Course Category	Course Code	Course Title	(TD) and Question Paper Setting Board (PSB)		Т	Р	Total	CIE Marks	SEE Marks	Total Marks	SEE Duration (H)	Contact Hours/wee
1	HSMC	BCS501	Software Engineering and Project Management		3	0	0	3	50	50	100	3	3
2	IPCC	BCS502	Computer Networks		3	0	1	4	50	50	100	3	5
3	PCC	BCS503	Theory of Computation	TD: CSE PSB: CSE/ISE	4	0	0	4	50	50	100	3	4
4	PCCL	BCSL504	Web Technology Lab		0	0	1	1	50	50	100	3	2
5	PEC	BCS505X	Professional Elective Course I		3	0	0	3	50	50	100	3	3
6	PW	BCS506	Mini Project		0	0	3	3	50	50	100	3	6
7	AEC	BRMK507	Research Methodology and IPR	Any Department	2	0	0	2	50	50	100	3	2
8	MC	BESK 508	Environmental Studies	TD: CV PSB: CV	1	0	0	1	50	50	100	1	1
		BNSK509	National Service Scheme (NSS)	NSS Coordinator									
9	NCMC	BPEK509	Physical Education (Sports and Athletics)	PED	0	0	0		100				2
9	NCMC	BYOK509	Yoga	Yoga Teacher	0	0	0	0	100	-	100	-	
		BNCK509	National Cadet Corps (NCC)	NCC officer									
		BMUK509	Music	Music Teacher									
			TOTAL					21	500	400	900	-	

Professional Elective Course I			
Course Code	Course Name	Course Code	Course Name
BCS505A	Computer Vision	BCS505B	Artificial Intelligence
BCS505C	Advanced JAVA	BCS505D	Big Data Analytics
Integrated Professional (Core Course (IPCC): Refers to Professional Core Course Theory	Integrated with practic	al's of the same course. Credit for IPCC can be 04 and its Teaching-
Learning hours (L: T: P) ca	an be considered as (3: 0: 2) or (2: 2: 2). The theory part of the IPCC	c shall be evaluated both	n by CIE and SEE. The practical part shall be evaluated by only CIE (no
SEE). However, questions	from the practical part of IPCC shall be included in the SEE question	on paper.	
National Service Scheme	/Physical Education/Yoga/NCC/Music: All students have to regis	ter for any one of the co	urses namely National Service Scheme (NSS), Physical Education (PE)
(Sports and Athletics), Yoga (YOG), National Cadet Corps (NCC) and Music with the concerned coordinator of the course during the beginning of each semester starting from III semester			
to VII semester. In every se	emester, students should choose any one mandatory course among t	he available 5 courses w	vithout repeating the course again. Activities shall be carried out in each
of the semesters from III se	emester to the VI semester (for 4 semesters). Successful completion	of the registered course	and requisite CIE score is mandatory for the award of the degree. These
courses shall not be consid	ered for vertical progression as well as for the calculation of SGPA	and CGPA, but comple	etion of the course is mandatory for the award of degree.
Professional Elective Con	urses (PEC): A professional elective (PEC) course is intended to	enhance the depth and	breadth of educational experience in the Engineering and Technology
curriculum. Multidisciplinary courses that are added supplement the latest trend and advanced technology in the selected stream of engineering. Each group will provide an option to select			
one course. The minimum number of students' strengths for offering a professional elective is 10. However, this conditional shall not be applicable to cases where the admission to the			
program is less than 10.			
Mini Project: The Mini Project Work is a part of the curriculum in the pre-final year. Mini Project is a course which will provide a platform to students to enhance their practical knowledge			
and skills by the development of small systems/applications. Based on the ability/abilities of the student/s and recommendations of the mentor, a Mini- project can be assigned to a group			

having not more than 4 students. A comprehensive report is to be prepared after completion of the project work.

B.E. COMPUTER SCIENCE AND ENGINEERING			
Choice Based Credit System (CBCS) applicable for 2022 Scheme			
	SEMESTER – V		
Software Engineering and Project Management (3:0:0) 3			
(Effective from the academic year 2024-25)			
Course Code	BCS501	CIE Marks	50
Teaching Hours/Week (L:T:P)3:0:0SEE Marks50			
Total Number of Contact Hours40Exam Hours3			
Course Objectives			

Course Objectives

- 1. Outline software engineering principles and activities involved in building software programs.
- 2. Describe the process of requirement gathering, classification, specification and validation.
- 3. Discuss various types of software testing practices and software evolution processes.
- 4. Recognize the importance Project Management and Planning.

Preamble:

Software Engineering refers to the systematic application of engineering approaches to the development of software. This course emphasizes essential principles, methodologies, and practices of Software Engineering and Project Management. It encompasses fundamentals of software engineering, requirement analysis to project management. Students will gain a comprehensive understanding of the software development lifecycle and project management strategies.

Module – 1

Introduction: Need for Software Engineering. Professional Software Development, Software Engineering Ethics. Case Studies.

Software Processes: Software Process models: Waterfall Model, Incremental Development, Spiral Model, Process activities.

Textbook 1: 1.1, 1,2, 1.3, 2.1, 2.2

(8 hours) Module – 2 Requirements Engineering: Functional and Non-functional requirements, Requirements Engineering Processes. Requirements Elicitation and Analysis, Requirements Specification, Requirements validation, Requirements change.

Textbook 1: Chapter 4

(8 hours)

Module – 3	
Design and Implementation: Object-Oriented design using UML, De	sign pattern, Implementation
issues. Open source development.	
Textbook 1: Chapter 7	(8 hours)
Module – 4	
Software Testing: Development testing, Test-driven development, Rel	ease testing, User testing.
Test Automation.	
Textbook 1: Chapter 8	(8 hours)
Module – 5	
Project management: Risk management, Managing people, Teamwor	k
Project planning: Software pricing. Plan-driven development, Project	scheduling.
Textbook 1: Chapter 22 and 23.1, 23.2, 23.3	
	(8 hours)
Course Outcomes:	
The students will be able to:	
CO 1. Understand the activities involved in software engineering and p	
CO 2. Describe requirements Engineering to build various software moCO 3. Apply design principles in real-time applications.	Jueis.
	accoment prestiess in
CO 4. Analyze the different software testing processes and project mar software development.	lagement practices in
Textbook:	
1. Ian Sommerville: Software Engineering, 10th Edition, Pearson Ed	ucation, 2016.
References:	
1. Paul C. Jorgensen: Software Testing, A Craftsman's Approac	ch 3rd Edition Auerbach
Publications, 2008.	
2. Mauro Pezze, Michal Young: Software Testing and Analysis	- Process, Principles and
Techniques, Wiley India, 2009.)	, I
Alternate Assessment Tools (AATs) suggested:	
Role play: Demonstrating the Software Development Life Cyc	le (SDLC) through team
activities, where students take on different roles such as developer	· · · ·
illustrate the practical application of software engineering concepts an	· · · ·
1 1r	1 5

Web links / e – resources:

- 1. <u>https://onlinecourses.nptel.ac.in/noc20_cs68/preview</u>
- 2. https://www.youtube.com/watch?v=WxkP5KR_Emk&list=PLrjkTql3jnm9b5nrggx7Pt1G 4UAHeFlJ
- 3. http://elearning.vtu.ac.in/econtent/CSE.php
- 4. http://elearning.vtu.ac.in/econtent/courses/video/CSE/15CS42.html
- 5. https://nptel.ac.in/courses/128/106/128106012/

B.E. COMPUTER Choice Based Cred	it System (CBCS) applicabl	le for 2022 Scheme	
	SEMESTER – V		
	TER NETWORKS (3) from the academic year 202		
Course Code	BCS502	CIE Marks	50
Teaching Hours/Week (L:T:P)	3:0:2	SEE Marks	50
Total Number of Contact Hours	40+12(Practical)	Exam Hours	30
Course Objectives:	40+12(11actical)	LXaiii 110u15	5
This course will enable students to: (Lis 1. Understand fundamentals of data con	1 1	5	
 Explain routers, IP and Routing Algo Discuss transport layer services and 	understand UDP and T		
4. Demonstration of application layer p Preamble: This course provides an			
information economy. Data Commu contemporary technologies and hence constant upgrade in knowledge and sl rewarding career including the pote Network Technicians, Network adm Architects.	e gained significance kills Computer networ ntial job opportunitie inistrators, Network	in engineering educa rking can lead to an e es such as Network	tion. With exciting and Specialists,
	Module – 1		
Data Communications: Data Communic Protocol Layering, TCP/IP Protocol suit Digital Signals, Transmission Impairme (Only Line coding: Polar, Bipolar and Ma	te, The OSI model, Ph nt, Digital Transmissi	hysical Layer: Data ar on: Digital to digital	nd Signals,
Tout he als 1 (Chil 2 2		((00 II
Text book1 :Ch:1,2,3	M. J1. 2		08 Hours)
Data Link Layer: Error Detection and Checksum, Data link layer protocols, Sto protocol (Framing, Transition phases onl Access and Channelization	p and Wait, Go-Back-N	N, Selective repeat, Poi	int to Point
Text book 1Ch: 9,10,11			(08 Hours)
TDY/4 4 11 Y 4 1 7 1 7 1 7 1	Module – 3		(7.6)
IPV4 Addresses, Internet Protocols: IPv4 Routing Algorithm, The Distance-Vector		-	ate (LS)
Text book 1: Chapter 18.4,18.4.1,18.4.2,1			
	8.4.3,19.1,19.1.1		

Module – 4

Introduction to Transport layer services, Connectionless Transport: UDP, UDP Segment Structure, UDP Checksum, Connection-Oriented Transport TCP: TCP Segment Structure, Round- Trip Time Estimation and Timeout, TCP Connection Management

Text book 2 3.1,3.3,3.5.2,3.5.3,3.5.6

Module – 5

(08 Hours)

Application Layer: Principles of Network Applications: Network Application Architectures, Processes Communicating, Application-Layer Protocols. The Web and HTTP: Overview of HTTP, Non-persistent and Persistent Connections, HTTP Message Format, File Transfer: FTP Commands & Replies, Electronic Mail in the Internet: SMTP, Mail Message Format, Mail Access Protocols, DNS; The Internet's Directory Service: Services Provided by DNS, Overview of How DNS Works, DNS Records and Messages, Socket Programming

Text Book2: 2.1.1,2.1.2,2.1.5,

2.2.1-,2.2.3, 2.3.1,

2.4.12.4.3,2.4.4, 2.5.1-2.5.3,2.7 (08 Hours)

	Practical components for IPCC (add this only for IPCC courses)		
Sl. No.	Experiments		
1	Implementation of Cyclic Redundancy Check for error correction and detection.		
2	Write a program for congestion control using leaky bucket algorithm		
3.	Write a program to find the shortest path between vertices using bellman-ford		
	algorithm		
4.	Implement a client Server program using TCP and UDP		
5	Implement three nodes point – to – point network with duplex links between them.		
	Set the queue size, vary the bandwidth and find the number of packets dropped		
6.	Simulate a four-node point-to-point network with the links connected as follows:		
	n0 - n2, $n1 - n2$ and $n2 - n3$. Apply TCP agent between $n0-n3$ and UDP between		
	n1-n3. Apply relevant applications over TCP and UDP agents, changing the		
	parameter and determine the number of packets sent by TCP / UDP		
7.	Implement an Ethernet LAN using n nodes and set multiple traffic nodes and plot		
	congestion window for different source / destination		
8.	Implement simple ESS and with transmitting nodes in wire-less LAN by		
	simulation and determine the performance with respect to transmission of packets.		
a a			

Course Outcomes:

The students will be able to:

CO1: Apply computer networking concepts to perform data communication between different entities.

CO2: Analyse different layer services and protocols.

CO3: Analyse the algorithms to provide congestion control, routing and processes communication.

CO4: Demonstrate the concepts/protocols of different layers.

CO5: Demonstrate the network architecture used in various organizations

Textbooks:

1. Behrouz A Forouzan, Data and Communications and Networking, Fifth Edition, McGraw Hill

2. James F Kurose and Keith W Ross, Computer Networking, A Top-Down Approach, Sixth Edition, Pearson, 2017.

References:

- 1. Alberto Leon-Garcia and Indra Widjaja: Communication Networks Fundamental Concepts
- 2. Larry L. Peterson and Bruce S. Davie: Computer Networks A Systems Approach, 6th Edition, Elsevier, 2007.

Alternate Assessment Tools (AATs) suggested:

Demonstration and Survey on network architecture of various organizations

Web links / e – resources:

1. <u>Computer Networks and Internet Protocol - Course (nptel.ac.in)</u>

B.E. COMPUTER SCIENCE AND ENGINEERING Choice Based Credit System (CBCS) applicable to 2022 scheme SEMESTER -V

Theory of Computation (4:0:0) 4 (Effective from the academic year 2024-25) Course Code **CIE Marks** 50 BCS503 Teaching Hours/Week (L:T:P) 4:0:0 SEE Marks 50 50 **Total Number of Contact Hours** Exam Hours 3 **Course Objectives:** This course will enable students to: Apply the core concepts in Automata and Theory of Computation 1. 2. Design Grammars for context free languages 3. Prove theorems in automata theory using suitable properties 4. Design PDA and Turing machines for suitable languages

Preamble:

In this course, we delve into the elegant theories and intricate models that define what is computationally possible and impossible. From finite automata to Turing machines, from regular languages to undecidability, we explore the boundaries and capabilities of computation itself.

Introduction to Finite Automata:

Introduction to Finite Automata; The central concepts of Automata theory; Deterministic finite automata; Nondeterministic finite automata. Finite automata with Epsilon-transitions.

Module - 1

Text book : 1.5, 2.2, 2.3, 2.5

Module – 2

Regular expressions, Properties of Regular Languages: Finite Automata and Regular Expressions; Applications of Regular Expressions. Kleene's theorem. **Regular languages**: Proving languages not to be regular languages; Closure properties of regular languages; Equivalence and minimization of automata.

Text Book : 3.1, 3.2, 3.3, 4.1, 4.2, 4.4

Module – 3

Context-Free Grammars and Languages: Context–free grammars; Writing a grammar, Leftmost derivation, rightmost derivation, Parse Trees; Applications; Ambiguity in grammars and Languages.

Text Book: 5.1, 5.2, 5.3, 5.4

Module - 4

Properties of Context-Free Languages: Normal forms for CFGs. **Pushdown Automata:** Definition of the Pushdown automata; the languages of a PDA; Equivalence of PDA's and CFG's; Deterministic Pushdown Automata.

(10 hours)

(10 hours)

(10 hours)

Text Book: 7.1, 6.1, 6.2, 6.3, 6.4

(10 hours)

Module – 5

Introduction to Turing Machine: Problems that Computers cannot solve; The turning machine; Programming techniques for Turning Machines; Extensions to the basic Turning Machines; Turing Machine and Computers.

Recap: Summary of the Course

Text Book: 8.1, 8.2, 8.3, 8.4, 8.6

Course Outcomes:

The students will be able to:

CO1: Understand the concept of abstract machines.

CO2: Apply the finite automata concepts for solving computing problems.

CO3: Design context free grammars for formal languages.

CO4: Design PDA and Turing machine for solving computational problems.

CO5: Achieve the proficiency with mathematical tools and formal methods.

Textbooks:

1. John E. Hopcroft, Rajeev Motwani, Jeffrey D.Ullman ,Introduction to Automata Theory, Languages and Computation, Pearson Education, 3rd Edition, 2007

References:

- 1. Peter Linz, An Introduction to Formal Languages and Automata, 3rd Edition, Narosa Publishers, 1998.
- 2. K.L.P. Mishra, Theory of Computer Science, Automata, Languages, and Computation, PHI Learning, 3rd Edition, 2009.
- 3. Elaine Rich, Automata, Computability and Complexity, 1st Edition, Pearson Education, 2012/2013.
- 4. John C Martin, Introduction to Languages and Automata Theory, Tata McGraw-Hill, 3rd Edition, 2007.

Alternate Assessment Tools (AATs) suggested:

- Application of JFLAP Tool to solve sample problems.
- Assignment questions on decidability and undecidability.

Web links / e – resources:

- <u>https://www.geeksforgeeks.org/theory-of-computation-automata-tutorials/</u>
- <u>https://brilliant.org/wiki/finite-state-machines/</u>

B.E. COMPUTER SCIENCE AND ENGINEERING

Choice Based Credit System (CBCS) applicable from 2022 scheme SEMESTER -VI

Web Technology Lab (0:0:2) 1

(Effective from the academic year 2024-25)

Course Code	BCSL504	CIE Marks	50
Teaching Hours/Week (L: T:P)	0:0:2	SEE Marks	50
Total Number of Contact Hours	15 hrs.	Exam Hours	01

Course Objectives:

This course will enable students to:

- 1. Illustrate the Semantic Structure of HTML and CSS
- 2. Compose forms and tables using HTML and CSS
- 3. Design Client-Side programs using JavaScript and Server-Side programs using PHP
- 4. Infer Object Oriented Programming capabilities of PHP.

Preamble: This course is intended to teach the basics involved in publishing content on the World Wide Web. This includes the fundamentals of how the Internet and the web function, and a general grounding introduction to more advanced topics such as programming and scripting. This will also expose students to the basic tools and applications used in Web technologies.

List of Experiments

- 1. Write a JavaScript to design a simple calculator to perform the following operations: sum, product, difference and quotient.
- 2. Write a JavaScript code that displays text "TEXT-GROWING" with increasing font size in the interval of 100ms in RED COLOR, when the font size reaches 50pt it displays "TEXTSHRINKING" in BLUE color. Then the font size decreases to 5pt.
- 3. Develop and demonstrate a HTML5 file that includes JavaScript script that uses functions for the following problems:
 - a. Parameter: A string
 - b. Output: The position in the string of the left-most vowel
 - c. Parameter: A number
 - d. Output: The number with its digits in the reverse order
- 4. Design an XML document to store information about a student in an engineering college affiliated to VTU. The information must include USN, Name, and Name of the College, Programme, Year of Joining, and email id. Make up sample data for 3 students. Create a CSS style sheet and use it to display the document.
- 5. Write a PHP program to keep track of the number of visitors visiting the web page and to display this count of visitors, with proper headings.
- 6. Write a PHP program to display a digital clock which displays the current time of the server.
- 7. Write the PHP programs to do the following:
 - a. Implement simple calculator operations.
 - b. Find the transpose of a matrix.
 - c. Multiplication of two matrices.
 - d. Addition of two matrices.

- 8. Write a PHP program named states.py that declares a variable states with value "Mississippi Alabama Texas Massachusetts Kansas". write a PHP program that does the following:
 - a. Search for a word in variable states that ends in xas. Store this word in element 0 of a list named states List.
 - b. Search for a word in states that begins with k and ends in s. Perform a case-insensitive comparison. [Note: Passing re.Ias a second parameter to method compile performs a case-insensitive comparison.] Store this word in element1 of states List.
 - c. Search for a word in states that begins with M and ends in s. Store this word in element 2 of the list.
 - d. Search for a word in states that ends in a. Store this word in element 3 of the list.
- 9. Write a PHP program to sort the student records which are stored in the database using selection Output: The position in the string of the left-most vowel sort.

Course Outcomes: The students will be able to:

- CO1: Analyze a web page's elements and attributes.
- CO2: Design dynamic web pages using JavaScript
- CO3: Develop a web application project using any web framework and database.

Textbooks:

- 1. Randy Connolly, Ricardo Hoar, "Fundamentals of Web Development", 1st Edition, Pearson Education India. (ISBN:978-9332575271).
- 2. Robert W. Sebesta: Programming the World Wide Web, 4th Edition, Pearson Education, 2008. (Listed topics only from Chapters 1 to 9, 11 to 15).

Alternate Assessment Tools (AATs) suggested:

1. Mini project using appropriate framework.

Professional Elective Course I

B.E. COMPUTER SCIENCE AND ENGINEERING

Choice Based Credit System (CBCS) applicable for 2022

Scheme

Scheme	SEMESTER – VI		
CON	MPUTER VISION (3:0	:0) 3	
	from the academic year 20	2	
Course Code	BCS505A	CIE Marks	50
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	50
Total Number of Contact Hours	40	Exam Hours	3
Course Objectives:		•	
This course will enable students to):		
1. Be familiar with both the theor	etical and practical asp	ects of computing with	images.
2. Have described the foundation	of image formation, m	easurement, and analys	sis.
3. Understand the geometric relat	ionships between 2D in	nages and the 3D world	d.
4. Explore the principles of state-	of-the-art deep neural r	networks.	
Preamble:			
Computer vision is an important	applied research a	rea encompassing a	spects from
geometry, machine learning, probal	bilistic models, optim	ization etc. The cours	e consists of
various important aspects of comp	outer vision namely g	geometry, motion, ima	age features,
and low-level and high-level imag			n that some
fundamental frameworks as well as		nethods are covered.	
	Module – 1		
Introduction: What is computer	vision? Image form	ation: Geometric pri	mitives and
transformations Photometric image			
Image processing: Point operators,	0	8	
Text book -1: Chapter 1.1, Chapter 2		.1 (8 Hours)
	Module – 2		
Model fitting and optimization:		polation, Variation n	nethods and
regularization, Markov random field			
Deep learning: Deep neural networ			、
Text book-1: Chapter 4.1, ,4.2, 4.3, 5		(8	Hours)
	Module – 3		
Recognition : Instance recognition	, Image classificati	on , Object detection	n, Semantic
segmentation			
Feature detection and matchin	ig: Contour tracking	, Lines and vanish	ning points,
Segmentation	175	(0)	Uouro)
Text book -1 : 6.1,6.2, 6.3, 6.4,7.3, 7.4		(0)	Hours)
Commutational shate marker line	Module – 4	Territore	
Computational photography : Ima synthesis	age matting and cor	npositing , lexture a	analysis and
Structure from motion and SLA	M. Two-frame stru	cture from motion	Multi-framo
structure from motion, Simultaneou			Multi-Itallie
Text book-1 : Chapter 10.4, 10.5, 11.	-		Hours)
Text book 1. Gnapter 10.7, 10.3, 11.	<u>Module – 5</u>	(0)	1104135
Donth actimation. Eninglan goom		ondonce Donce com	ocnondonas
Depth estimation: Epipolar geom Local methods, Global optimization			•
reconstruction : Model-based recon		-	
Text book-1 : Chapter 12 (except 12)	0	unite maps and did	cu03.
icat book-1. Chapter 12 (except 12	2.0, 12.7J, 13.0.13.7	(8 Hou	rel
			5

Course Outcomes:

The students will be able to:

- CO1: Understand the fundamental concepts, terminology, theories in computer vision
- CO2: Apply various methods of computer vision related to multi-scale representation, edge detection and detection of other primitives, stereo, motion and object recognition.
- CO3: Design innovative computer vision applications or systems
- CO4: Evaluate performance of computer vision algorithms in diverse applications like, biomedical, automobile etc.,

Text book:

1. Richard Szeliski, "Computer Vision: Algorithms and Applications", Texts in Computer Science, 2nd edition, Springer Cham, published in 2022,

References:

- 1. Olivier Faugeras, "Three-Dimensional Computer Vision", Artificial Intelligence series, The MIT Press, ISBN: 9780262061582.
- **2.** D.Forsyth and J.Ponce , "Computer Vision A modern approach", Prentice Hall Robot Vision, by B. K. P. Horn, McGraw-Hill.

Alternate Assessment Tools (AATs) suggested:

• Submission of literature review report on recent tools used in computational photography

Web links / e – resources:

1. https://mitpress.mit.edu/9780262061582/three-dimensional-computer-vision

2. <u>https://www.sas.com/en_in/insights/analytics/computer-vision.html</u>

3. https://aws.amazon.com/computer-vision.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Choice Based Credit System (CBCS) applicable for 2022 scheme

SEMESTER – V

Artificial Intelligence (3:0:0) 3

(Effective from the academic year 2024-25)

Course Code	BCS505B	CIE Marks	50
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	50
Total Number of Contact Hours	40	Exam Hours	03

Course Objectives:

This course will enable students to:

- 1. Gain a historical perspective of AI and its foundations.
- 2. Become familiar with basic principles of AI toward problem solving.
- 3. Get to know approaches of inference, perception, knowledge representation, and learning.

Preamble: Artificial Intelligence (AI) is a field with a rich history and solid foundations that have evolved over decades. Originating from early computational theories and the quest to create machines capable of mimicking human thought, AI has grown into a multifaceted discipline. To understand AI comprehensively, it is essential to gain a historical perspective, tracing its development from the pioneering work of Alan Turing and John McCarthy to the sophisticated systems of today. Familiarity with the basic principles of AI is crucial for addressing a wide range of problem-solving scenarios. These principles include algorithms, data structures, and computational complexity, which together form the backbone of AI applications. By applying these principles, AI systems can analyze data, recognize patterns, and make decisions with minimal human intervention.

Module – I

Introduction: What is AI? Foundations and History of AI Intelligent Agents: Agents and environment, Concept of Rationality, The nature of environment, The structure of agents. Text book 1: Chapter 1-1.1, 1.2, 1.3 Chapter 2-2.1, 2.2, 2.3, 2.4

(8 hours)

Module – II

Problem-solving: Problem-solving agents, Example problems, Searching for Solutions Uninformed Search Strategies: Breadth First search, Depth First Search, Iterative deepening depth first search; Text book 1: Chapter 3- 3.1, 3.2, 3.3, 3.4 (8 hours)

Module – III

Informed Search Strategies: Heuristic functions, Greedy best first search, A*search. Heuristic Functions Logical Agents: Knowledge-based agents, The Wumpus world, Logic, Propositional logic, Reasoning patterns in Propositional Logic (8 hours)

Text book 1: Chapter 3-3.5,3.6 Chapter 4 – 4.1, 4.2 Chapter 7-7.1, 7.2, 7.3, 7.4, 7.5

Module – IV

First Order Logic: Representation Revisited, Syntax and Semantics of First Order logic, Using First Order logic. Inference in First Order Logic: Propositional Versus First Order Inference, Unification, Forward Chaining, Backward Chaining, Resolution

Text book 1: Chapter 8-8.1, 8.2, 8.3 Chapter 9-9.1, 9.2, 9.3, 9.4, 9.5

(8 hours)

Module – V

Uncertain Knowledge and Reasoning: Quantifying Uncertainty: Acting under Uncertainty, Basic Probability Notation, Inference using Full Joint Distributions, Independence, Baye's Rule and its use. Wumpus World Revisited Expert Systems: Representing and using domain knowledge, ES shells. Explanation, knowledge acquisition

(8 hours)

Course outcomes:

CO1: Acquire knowledge of agent architecture, searching and reasoning techniques for different applications.

CO2: Compare various Searching and Inferencing Techniques.

CO3: Apply knowledge base sentences using propositional logic and first order logic

CO4: Analyze the concepts of quantifying uncertainty.

CO5: Develop the concepts of expert Systems to build applications.

Text books:

- 1. Stuart J. Russell and Peter Norvig, Artificial Intelligence, 3rd Edition, Pearson, 2015
- 2. Elaine Rich, Kevin Knight, Artificial Intelligence, 3rd edition, Tata McGraw Hill, 2013

References:

- 1. George F Lugar, Artificial Intelligence Structure and strategies for complex, Pearson Education, 5th Edition, 2011.
- 2. Nils J. Nilsson, Principles of Artificial Intelligence, Elsevier, 1980.
- 3. Saroj Kaushik, Artificial Intelligence, Cengage learning, 2014

Alternate Assessment Tools (AATs) suggested:

MOOC courses

Web links / e – resources:

- https://www.coursera.org/learn/introduction-to-ai
- https://study.iitm.ac.in/ds/course_pages/BSCS3003.html
- https://onlinecourses.nptel.ac.in/noc23_cs09/preview
- https://www.ibm.com/topics/machine-learning
- https://www.coursera.org/specializations/deep-learning

B.E. COMPUTER SCIENCE AND ENGINEERING

Choice Based Credit System (CBCS) applicable for 2022 Scheme

SEMESTER – V

ADVANCED JAVA (3:0:0) 3

(Effective from the academic year 2024-25)

Course Code	BCS505C	CIE Marks	50
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	50
Total Number of Contact Hours	40	Exam Hours	3

Course Objectives:

This course will enable students to: (List as per the requirement of your course)

- 1. Identify the need for advanced Java concepts like Enumerations and Collections
- 2. Adapt servlets to build server side programs
- 3. Make use of JDBC to access database through Java Programs
- 4. Demonstrate the use of Java concepts to develop component-based Java software

Preamble: This course enables the student to learn the advanced concepts of Java with Object Oriented Programming. They will be able to manipulate collections for real world problem with the usage of servlet and databases.

Module – 1

Enumerations, Autoboxing and Annotations(metadata):

Enumerations, Enumeration fundamentals, the values() and valueOf() Methods, java enumerations are class types, enumerations Inherits Enum, example, type wrappers, Autoboxing, Autoboxing and Methods, Autoboxing/Unboxing occurs in Expressions, Autoboxing/Unboxing, Boolean and character values, Autoboxing/Unboxing helps prevent errors, A word of Warning. Annotations, Annotation basics, specifying retention policy, Obtaining Annotations at run time by use of reflection, Annotated element Interface, Using Default values, Marker Annotations, Single Member annotations, Built-In annotations.

Text book 1: Ch.12

Module – 2

(8 hours)

(8 hours)

The collections and Framework:

Collections Overview, Recent Changes to Collections, The Collection Interfaces, The Collection Classes, accessing a collection Via an Iterator, Storing User Defined Classes in Collections, The Random Access Interface, Working with Maps, Comparators, The Collection Algorithms, Why Generic Collections? The legacy Classes and Interfaces, Parting Thoughts on Collections.

Text Book 1: Ch.17

Module – 3

String Handling:

The String Constructors, String Length, Special String Operations, String Literals, String Concatenation, String Concatenation with Other Data Types, String Conversion and toString() Character Extraction, charAt(), getChars(), getBytes() toCharArray(), String Comparison, equals() and equalsIgnoreCase(), regionMatches() startsWith() and endsWith(), equals() Versus == , compareTo() Searching Strings, Modifying a String, substring(), concat(), replace(), trim(), Data Conversion Using valueOf(), Changing the Case of Characters Within a String, Additional String Methods, StringBuffer , StringBuffer Constructors, length() and capacity(), ensureCapacity(), setLength(), charAt() and setCharAt(), getChars(),append(), insert(), reverse(), delete() and deleteCharAt(), replace(), substring(), Additional StringBuffer Methods, StringBuilder **Text Book 1:** Ch.15 **(8 hours)**

Module – 4

Life Cycle of a Servlet

Using Tomcat for Servlet Development; A simple Servlet; The Servlet API; The Javax.servlet Package; Reading Servlet Parameter; The Javax.servlet.http package; Handling HTTP Requests and Responses; Using Cookies; Session Tracking. Java Server Pages (JSP): JSP, JSP Tags, Tomcat, Request String, User Sessions, Cookies, Session Objects.

Text Book 1: Ch. 31 **Text Book 2:** Ch. 11

Module – 5

(8 hours)

(8 hours)

The Concept of JDBC

JDBC Driver Types; JDBC Packages; A Brief Overview of the JDBC process; Database Connection; Associating the JDBC/ODBC Bridge with the Database; Statement Objects; ResultSet; Transaction Processing; Metadata, Data types; Exceptions.

Text Book 2: Ch. 06

Course Outcomes:

The students will be able to:

CO1: Illustrate the need for advanced Java concepts in developing modular and efficient programs.

CO2: Analyse how servlets fit into Java-based web application architecture.

CO3: Apply JDBC API to access the database information.

CO4: Develop reusable software components using Java & J2EE concepts.

Textbooks:

- 1. Herbert Schildt: JAVA the Complete Reference, 11th Edition, Tata McGraw Hill, 2020.
- 2. Jim Keogh: J2EE-TheCompleteReference, McGraw Hill, 2007.

References:

- 1. Uttam K Roy, Advanced JAVA programming, Oxford University press, 2015.
- 2. Y. Daniel Liang: Introduction to JAVA Programming, 7thEdition, Pearson Education, 2007.
- 3. Stephanie Bodoff et al: The J2EE Tutorial, 2nd Edition, Pearson Education, 2004.

Alternate Assessment Tools (AATs) suggested:

- MOOCS
- Mini Project
- Program Based Assignment of higher cognitive levels.

Web links / e – resources:

https://www.codecademy.com/learn/learn-java

https://www.udemy.com/course/java-tutorial/

https://hyperskill.org/tracks/8

https://www.educative.io/courses/learn-java-from-scratch

	R SCIENCE AND ENGI		
Choice Based Credit System (CBCS) applicable for 2022 Scheme SEMESTER – V			
BIG DATA ANALYTICS (3:0:0) 3			
	rom the academic year 2024-2		
Course Code	BCS505D	CIE Marks	50
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	50
Total Number of Contact Hours	40	Exam Hours	3
Course Objectives:			
1. Understand fundamentals of Big	-		
2. Explore the Hadoop framework	1	•	
3. Illustrate the concepts of NoSQL			
4. Employ MapReduce programmin	e 1		
5. Use Spark and SparkStreaming f Preamble:	or Real time data processi	ng.	
			1 :
Big Data Analytics is required to deal and tools are used to solve problem	-		
manufacturing, services, retail, banking			
	Module – 1	accultais, and acto	space etc.
Introduction to Big Data Analytics: Big		Ilel Processing Des	igning Data
Architecture, Data Sources, Quality, Pre-P			
Analytics Applications and Case Studies.			s, 218 2 uu
5 11			
Text book 1: Chapter 1: 1.2 -1.7			(8 hours)
	Module – 2		
Introduction to Hadoop: Introduction, Hadoop and its Ecosystem, Hadoop Distributed File System, MapReduce Framework and Programming Model, Hadoop Yarn, Hadoop Ecosystem Tools. Hadoop Distributed File System Basics: HDFS Design Features, Components, HDFS User Commands. Essential Hadoop Tools: Using Apache Pig, Hive, Sqoop, Flume, Oozie, HBase.			
Text book 1: Chapter 2 :2.1-2.6			(8 hours)
101 DOOK 1. Chapter 2 .2.1-2.0	Module – 3		
NoSQL Big Data Management, MongoDl Data Architecture Patterns, NoSQL to Ma Tasks, MongoDB, Databases, Cassandra Da	B and Cassandra: Introducti anage Big Data, Shared-Not		
Text book 1: Chapter 3: 3.1-3.7			(8 hours)
·	Module – 4		
MapReduce, Hive and Pig: Introduction, Execution, Composing MapReduce for Calo			MapReduce
Text book 1: Chapter 4: 4.1-4.6			(8 hours)
Module – 5			
Spark : Introduction to Data Analysis with Spark, Programming using RDDs and MLIB, Data ETL, Information Reporting, Data visualization. SparkStreaming : Data Stream Concepts and Data Stream Management, Stream Computing Aspects, Real Time Analytics Platforms.			
Text book 1: Chapter 5 and 7: 5.2, 5.3,5.5	,5.6, 7.2, 7.3,7.5		(8 hours)

Course Outcomes:

The students will be able to:

- Apply the fundamental concepts of Big Data analytics.
- Analyze the concepts of NoSQL and Mapreduce programming concepts for Big Data Applications.
- Design solutions for different case studies/problem statements.
- Demonstrate big data tools to solve real time problems.

Textbooks:

1. Raj Kamal and Preeti Saxena, "Big Data Analytics Introduction to Hadoop, Spark, and Machine-Learning", McGraw Hill Education, 2018 ISBN: 9789353164966, 9353164966

References :

1.Tom White, "Hadoop: The Definitive Guide", 4th Edition, O"Reilly Media, 2015.ISBN-13: 978-9352130672

2.Boris Lublinsky, Kevin T Smith, Alexey Yakubovich, "Professional Hadoop Solutions", 1stEdition, Wrox Press, 2014ISBN-13: 978-8126551071

3.Eric Sammer, "Hadoop Operations: A Guide for Developers and Administrators",1stEdition, O'Reilly Media, 2012.ISBN-13: 978-9350239261

4.Arshdeep Bahga, Vijay Madisetti, "Big Data Analytics: A Hands-On Approach", 1st Edition, VPT Publications, 2018. ISBN-13: 978-0996025577

Alternate Assessment Tools (AATs) suggested:

- Presentation on any case study implementation using Big Data Tools.
- MOOCS.

Web links / e – resources:

- <u>https://cdac.in/index.aspx?id=DAC&courseid=65</u>
- <u>https://spark.apache.org/docs/latest/rdd-programming-guide.html</u>
- <u>https://nptel.ac.in/courses/106104189</u>

BMS Institute of Technology and Management, Bengaluru 64

Choice Based Credit System (CBCS)

SEMESTER – V

Research Methodology and IPR (2:0:0)2

Common to all Branches

(Effective from the academic year 2024-25 for 2022 Scheme)

Course Code	BRMK507	CIE Marks	50
Teaching Hours/Week (L:T:P)	2:0:0	SEE Marks	50
Total Number of Contact Hours	26	Exam Hours	03

Course Objectives:

This course will enable students to:

- 1. Explain research process and research problem.
- 2. Gain knowledge on research design, sampling survey and data collection.
- 3. Familiarized with Interpretation and report writing.
- 4. Understand the concept of IP, patent and copy right.
- 5. Enhance their knowledge on trademarks, industrial and IC layout design.

Module – 1

Research Methodology: Meaning of Research, Objectives of research, types of research, research approaches, Significance of research, Research Process: Formulating research problem, Research methods verses methodology, Research and scientific method. Criteria of good research.

Defining the Research Problem: What is a Research Problem? Selecting the Research Problem, Necessity of Defining the Problem, Techniques Involved in Defining a problem.

(06 Hours)

Module – 2

Research Design: Meaning of Research Design, Need for Research design, Feature of a Good Design. Research Design in case of exploratory research studies, descriptive and diagnostic research studies. Basic Principles of Experimental Designs.

Design of sampling survey: Sample Design: Objective, size of sample, parameter of interest, selection of proper sample design. Sampling errors, non-sampling errors.

Data Collection: Experiments and Surveys, collection of primary data: observation method. Collection of secondary data. Selection of appropriate method for data collection.

(05 Hours)

Module – 3

Interpretation and Report writing: Meaning of Interpretation, Techniques of Interpretation, Precautions in interpretation, Significance of report writing, Different steps in report writing, layout of the research report, Types of reports, Oral presentation, Mechanics of writing research report, Precautions for writing a research reports.

(05 Hours)

Module – 4

Introduction to IP: Various forms of IP, Importance of intellectual property, Trade policy reviews, Agreement on trips.

Patent: What is patent, condition for grant of patent, Temporal and spatial aspects of patent, right of patentee, Patent office and register of patent.

Copyright: Copyright and classes of work, meaning of publication, ownership of copyright, license of copyright, term of copyright, Internet and copyright issues.

(05 Hours)

Module – 5

Trademarks: Introduction to trademark, term of trademark, collective marks, certification trademarks.

Industrial Design: Registration of Design: Non-registrable designs under The Design Act 2000, Condition for registration of Industrial Designs. Term of Industrial Designs.

IC Layout Design: Integrated Circuits Layout Design, Grant of registration of IC Layout Design. (05 Hours)

Course Outcomes:

The students will be able to:

CO1: Illustrate research process and research problem.

CO2: Describe research design, sampling survey and data collection.

CO3: Explain the techniques of Interpretation and report writing.

CO4: Summarize the concept of IP, patent and copy right.

CO5: Discuss trademarks, industrial and IC layout design.

TEXTBOOKS:

1. CR Kothari and Gaurav Garg, Research Methodology, New Age International Publishers, 2020.

2. Neeraj Pandey, Khushdeep Dharni, "Intellectual Property Rights", PHI Learning, 2014. **REFERENCES:**

- 1. Dinakar Deb, rajdeep Dey, Valentina, Engineering Research Methodology, Springer, 2019.
- 2. David V. Thiel, Research method for engineers, Cambridge University Press, 2014.
- 3. Prabhuddha Ganguli, "Intellectual Property Rights", Tata Mc-Graw –Hill, 2017.

ASSESSMENT METHODS

CIE Components (50 Marks)

Two Unit Tests each of 40 Marks. Sum of the two Internal Assessments Tests Marks will be out of 80 Marks and scaled down to 25 Marks.

CCA 1 : 25 Marks

CCA 2 : 25 Marks

Sum of the CCA's will be out of 50 Marks and scaled down to 25 Marks.

Internal Assessments Tests	: 25 Marks
CCA	: 25 Marks
Total CIE Marks	: 50 Marks

SEE Component (50 Marks)

- SEE examination is conducted for 100 Marks and scaled down to 50 Marks.
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of three sub- questions) from each module.

Assessment Details (both CIE and SEE):

- The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%.
- The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50).
- The minimum passing mark for the SEE is 35% of the maximum marks (18 marks out of 50).
- A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

BMS Institute of Technology and Management, Bengaluru 560064 Choice Based Credit System (CBCS) **SEMESTER - V Environmental Studies** (1:0:0) 1 **Common to all Branches** (Effective from the academic year 2024-25 for 2022 Scheme) **Course Code BESK508 CIE Marks** 50 Teaching Hours/Week (L:T:P) 50 1:0:0SEE Marks **Total Number of Lecture Hours** 15 **Exam Hours** 01 **CREDITS: 01 Course objectives:** This course will enable students to 1. Recognize the ecological basis for regional and global Environmental issues, and lead by example as an environmental steward.

- 2. Apply systems concepts and methodologies to analyze and understand interactions between social and environmental processes.
- 3. Analyze the trans-national character of environmental problems and ways of addressing them, including interactions across local to global scales.
- 4. Demonstrate proficiency in quantitative methods, qualitative analysis, critical thinking, and written and oral communication needed to conduct high-level work as environmentalists.

Module – 1

Biodiversity: Types, Value, Hot spots and Threats. (3 Hours) *Field work: Visit to a local area to document environmental assets: River / Forest / Grassland / Hill

Module – 2

Environmental Pollution & Abatement & Relevant Acts: Water, Soil and Air Pollution.

(3 Hours)

***Field work:** Visit to a local polluted Site-Urban/Rural/Industrial/Agricultural, followed by observation and documentation of environmental pollution and recommendation of remedial measures.

Module – 3

Waste Management & Public Health Aspects & Relevant Acts: E-waste, Bio-medical & Hazardous wastes.

(3 Hours)

***Field work:** Visit to a Resource Management Facility or Waste Treatment Facility, followed by understanding of process and its brief documentation.

Module – 4

Global Environmental Concerns: Ground water depletion, Climate Change and Carbon Trading.

(3 Hours)

*Field work: Visit to a Green Building, followed by understanding of process and its brief documentation.

Module – 5

Latest Developments in Environmental Pollution Mitigation: E.I.A., E.M.S., SDG.

(3 Hours)

*Field work: Visit to Environmental NGOs, followed by brief documentation. **Self-Study**/Discussion on Case Studies: Environmental Stewardship

* <u>Any one Field Work is to be successfully accomplished. The same will be assessed for AAT.</u>

Course outcomes:

The students will be able to:

CO 1: Appraise the significance of ecological systems under the ambit of environment.

CO 2: Analyze for the consequences owing from anthropogenic interactions on the environmental processes.

CO 3: Recommend solutions in the Anthropocene Epoch, with an in-depth understanding of the interdisciplinary facets of environmental issues.

CO 4: Elucidate the trans-national character of environmental problems and ways of addressing them.

CO 5: Appraise latest developments, concerns and ethical challenges associated with Environmental Protection.

Text Book:

- 1. Rajesh Gopinath and N. Balasubramanya, "Environmental science and Engineering", 1st Edition, Cengage Learning India Private Limited, 2018.
- 2. J. S. Singh, S. P. Singh and S. R. Gupta, "Ecology, Environmental Science and Conservation", India, S. Chand Publishing, 2017.

References:

- 1. M. Gadgil and R. Guha, "This Fissured Land: An Ecological History of India", Univ. of California Press, 1993.
- 2. E. P. Odum and H. T. Odum, "Fundamentals of Ecology", Philadelphia: Saunders Publisher, 1971.
- 3. M. L. Mckinney, "Environmental Science systems & Solutions", Web enhanced Edition, City of Publisher, R. M. Publisher, 1996.

ASSESSMENT METHODS:

CIE Components (50 Marks)

The pattern of the CIE question paper is MCQ.

Two Unit Tests each of 40 Marks, MCQ type (duration 01 hour). Average of the two Internal Assessments Tests Marks will be out of 40 Marks, which is further scaled down to 25 Marks. (Student should score a minimum of 10 marks to be eligible.)

Two Assignment / AATs : 25 Marks [each] Sum of the Assignment and AATs will be out of 50 Marks and scaled down to 25 Marks. (Student should score a minimum of 10 marks to be eligible.)

Internal Assessments Tests: 25 MarksAssignment and AAT: 25 MarksTotal CIE Marks: 50 Marks (Student should score a minimum of 20 marks to be eligible.)

SEE Components (50 Marks)

- The pattern of the SEE question paper is MCQ.
- SEE question paper will be set for 50 questions of each of 01 marks. (Student should score a minimum of 20 marks to be eligible.)

Assessment Details (both CIE and SEE):

- The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 100%.
- The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50).
- The minimum passing mark for the SEE is 35% of the maximum marks (18 marks out of 50).
- A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.