			BMS INSTITUTE O (Autonom Scheme of Teaching	F TECH nous Inst and Ex ice Bas				ND to Eff yst	IAN U) ctiv m	AGEME from BCS)	$\text { Y } 20$	-22	
UG	OGRAM:	ECTRONIC	TELECOMMUNICATION ENGINEERIN	(ETE)							emeste		
											Exam	tion	
$\begin{aligned} & \text { Sl. } \\ & \text { No } \end{aligned}$	Course Category	Course Code	Course Title	Teaching Dept.					$\begin{aligned} & \text { Cre } \\ & \text { dits } \end{aligned}$	Duration	CIE	SEE	Total
					L	T	P	PW					
1	BS	21MTA31	Fourier Series, Numerical Methods, Statistics and Probability	MAT	3	1	1	0	4	3	50	50	100
		21KSK32	Samskrutika Kannada										
		21KBK32	Balake Kannada										
2	HS		OR	HS	1	0	0	0	1	1	50	50	100
		21CIP32	Constitution of India and Professional Ethics										
3	UHV	21UHV33	Universal Human Values-I	HS	1	0	0	0	1	1	50	50	100
4	INT	21INT34	Internship-I	ETE	0	0	0	4	2	3	100	--	100
5	PC	21EC35	Analog Electronics	ETE	2	2	0	0	3	3	50	50	100
6	PC	21EC36	Digital Electronics	ETE	2	2	0	0	3	3	50	50	100
7	PC	21EC37	Network Analysis	ETE	2	2	0	0	3	3	50	50	100
8	PC	21ECL38A	Analog Electronics Laboratory	ETE	0	1	2	0	1	3	50	50	100
9	PC	21ECL38B	Digital Electronics Laboratory	ETE	0	1	2	0	1	3	50	50	100
10	PC	21ECL38C	Object Oriented Programming Laboratory	ETE	0	1	2	0	1	3	50	50	100
TOTAL					11	10	7	4	20		550	450	1000

Course prescribed to Lateral entry Diploma holders admitted to III Semester B.E.

- The Lateral entry students have to undergo Internship-I during the intervening vacation of III and IV semesters.
- The Assessment Pattern for $1 / 2 / 3$ credit courses shall be done as per the VTU guidelines.
- BS-MTX (X-Variable) Eg: Core branches: ME, CV, EEE, ETE, ECE-MTA, Digital branches: CSE, ISE, AIML- MTB.
- Additional Mathematics I and II shall not be considered for vertical progression as well as for the calculation of SGPA and CGPA, but completion of the courses shall be mandatory for the award of degree.
- Successful completion of the course Diploma Mathematics-I shall be indicated as satisfactory in the grade card. Non completion of the same shall be indicated as unsatisfactory.

B.E ELECTRONICS AND TELECOMMUNICATION ENGINEERING Choice Based Credit System (CBCS) SEMESTER - III			
Fourier Series, Numerical Methods, Statistics and Probability (3:1:1) 4 (Common to ECE, ETE, EEE, MECH \& CIVIL Branches) (Effective from the academic year 2021-22)			
Course Code	21 MTA31	CIE Marks	50
Teaching Hours/Week (L:T:P)	$3: 1: 1$	SEE Marks	50
Total Number of Contact Hours	50	Exam Hours	3

Course Objectives:

This course will enable students to:

1. Apply the concepts of Fourier series, Fourier transforms, Difference equations and Z-transforms in the field of engineering.
2. Apply the concept of Numerical Techniques, and probability distribution to analyze problems arising in Science and Engineering field.
3. Apply the knowledge of interpolation/extrapolation and Numerical Integration technique whenever analytical methods fail or very complicated to offer solutions.

Module - I

Introduction: Understanding of Transform Calculus, Numerical methods \& their applications in Engineering, Economics and Statistics.

Statistical Methods: Correlation-Karl Pearson's coefficient of correlation - problems, Regression lines, lines of regression (without proof) -Problems.

Curve fitting: Curve fitting by the method of least squares- fitting of the curves of the form, $y=$ $a x+b, y=a x^{2}+b x+c$ and $y=a e^{b x}$.

Calculus of variation: Variation of a function and a functional, Extremal of a functional, Euler's equation, Standard variational problems.

Self-Learning Component: Fitting of the curves $y=a x^{b}$ and $y=a b^{x}$.
Lab Session 1:

1. Determination of polynomial using method of Least Square Curve Fitting.
2. Relation between variables: correlation, Regression.
(10 Hours)
Module - II
Finite Differences: Forward and backward differences, Newton's forward and backward interpolation formulae, Divided differences- Newton's divided difference formula, Lagrange's interpolation formula and inverse interpolation formula (all formulae without proof) -problems.

Numerical Integration: Simpson's $(1 / 3)^{\text {rd }}$ and $(3 / 8)^{\text {th }}$ rules, Weddle's rule (without proof) problems.

Self-Learning Component: Trapezoidal rule.

Lab Session 2:

1. Numerical solution using Newton's Forward / Backward interpolation formula.
2. Numerical integration using Simpson's One-third rule.
(10 Hours)

Module - III

Fourier Series: Dirichlet's conditions, Fourier Series of periodic functions of period 2π and
arbitrary period. Half range Fourier Series, Practical harmonic analysis over the period 2π.
Self-Learning Component: Complex Fourier Series.

Lab Session 3:

1. Obtain the Fourier series of a function.
2. Finding Fourier series by practical Harmonic Analysis. (10 Hours)

Module - IV

Fourier Transforms: Infinite Fourier transforms, Fourier Sine and Cosine transforms. Inverse Fourier transforms - problems.

Z-transforms: Difference equations, basic definition, Z-transform-definition, Standard Ztransforms (only formula), Damping rule, Shifting rule (without proof) and problems, Inverse Ztransforms - problems, Solution of Difference equations using Z transforms.

Self-Learning Component: Proofs of Z-transformation of standard functions. Lab Session 4:

1. Obtain the Fourier Transform of a function.
2. Obtain the solution of difference equation using Z Transforms. (10 Hours)

Module - V

Probability Distributions: Random variables (discrete and continuous), probability mass/density functions. Binomial distribution, Poisson distribution. Exponential and Normal distributions, problems.

Self-Learning Component: Uniform distribution.
Lab Session 5:

1. Compute Pdf/Pmf for given data.
2. Compute and plot the probability density function for Normal Distribution, Binomial Distribution, Exponential Distribution, Poisson Distribution.
Recap/Summary of the Course. (10 Hours)
Course Outcomes:
The students will be able to:
C01: Make use of the concepts of method of least squares, correlation and regression analysis to fit a suitable mathematical model for the statistical data
CO2: Apply the knowledge of Numerical Methods in the modeling of various physical and engineering phenomena.
CO3: Apply Fourier series to study the behavior of periodic functions and Fourier transforms and Z-transforms to illustrate discrete/continuous function arising in wave and heat propagation, signals and systems.
C04: Develop probability distribution of discrete, continuous random variables and joint probability distribution occurring in digital signal processing, information theory and design engineering.

Question paper pattern:

SEE will be conducted for 100 marks.

- The question paper will be set for 100 marks (duration of 03 hours) and marks scored will be proportionally scaled down to 50 marks.
- The question paper will have ten questions. Each question is set for 20 marks.
- There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), should have a mix of topics under that module.
- The students have to answer 5 full questions, selecting one full question from each module.

CIE will be announced prior to the commencement of the course.

- Three Unit Tests each of $\mathbf{2 0}$ Marks (Duration 01 hour).
- Two assignments each of 10 Marks.
- Two alternate assessment tools (AATs) for 20 Marks (duration 01 hour).
- The sum of three tests, two assignments, and AATs will be out of 100 marks and will be scaled down to 50 marks.

Textbooks:

1. B.S. Grewal, "Higher Engineering Mathematics", 43rd Edition, Khanna Publishers, 2015.
2. E. Kreyszig, "Advanced Engineering Mathematics", 10th Edition, John Wiley \& Sons, 2015.
3. B.V. Ramana, "Higher Engineering Mathematics", 6th Edition, Tata McGraw-Hill, 2010.

References:

1. N.P. Bali, Manish Goyal, "A Text Book of Engineering Mathematics", Laxmi Publishers, 2014.
2. H.K. Dass, Er. Rajnish Verma, "Higher Engineering Mathematics", $3^{\text {rd }}$ Edition, S. Chand publishers, 2014.
3. P. Kandasamy, K. Thilagavathi, K. Gunavathi, "Engineering Mathematics", Vol. III, 2001.
4. S.S. Sastry, "Introductory Methods of Numerical Analysis", 4 ${ }^{\text {th }}$ Edition, Prentice Hall of India, 2010.

B．E ELECTRONICS AND TELECOMMUNICATION ENGINEERING Choice Based Credit System（CBCS） SEMESTER－III			
 （Effective from the academic year 2021－22）			
ఱిఙయి శుంశ్లత Course Code	21KSK42	నిరంతర ఆంతరిశ ఱోల్యひూఱుసేద అంశగళు CIE Marks	50
Teaching hours／Week（L：T：P）	1－0－0	Sనెమిస్ట్రం అంత్యద ఱరిం్షియు అంశగఱు SEE Marks	50
ఒట్ట్ బిอఁధనా అలిధి Total Number of contact hours	13	ఉరిశ్ష్షియు అఎదిü Exam Hours	01
 ఱూఙిచొండువుచు． 			
ఖోట゙も－1			
లீలవనేగెళు： （2 గంటిగెళు）			
థోటచ－2			
ఆధునిః షூవేణదద ซౌవ్య భాగే： （3 గంటెగళు）			
ఖ゙టృz－3			
ఆధునిశ ซూవ్య భాగ： జొంస బాళిన గొతె：చువింజు （2 గంటిగజజు）			
ఖ゙టうこ一4			


```
    (4 గంటోగెళు)
    ఖటうz-5
త్రువాసె శ్థనన:
```



```
    (2 గంటిగేళు)
```



```
    \odotణణఱఝి๑టజ
```



```
        \omegaు\Omegaడుత్తది.
```


Question paper pattern:

SEE will be conducted for 50 marks.

- The question paper will have 50 questions. Each question is set for 01 mark.
- SEE Pattern will be in MCQ Model (Multiple Choice Questions) for 50 marks.
- The duration of the examination is 01 Hour.

CIE will be announced prior to the commencement of the course.

- Three Unit Tests each of $\mathbf{2 0}$ Marks (Duration 01 hour).
- Two assignments each of 10 Marks.
- Two alternate assessment tools (AATs) for 20 Marks (duration 01 hour).
- The sum of three tests, two assignments, and AATs will be out of 100 marks and will be scaled down to 50 marks.
Textbook:
సెంస్స తిశ శ్న్నడ

B.E ELECTRONICS AND TELECOMMUNICATION ENGINEERING Choice Based Credit System (CBCS) SEMESTER - III			
బళ゙ శ్న్నడ Balake Kannada (1:0:0):1(Common to all Branches)(Effective from the academic year 2021-22)			
ఎిజయ స్ంశాలత Course Code	21KBK42	నిరంఠరర ఆంఠరిశ ఱొల్యృూఱేనేద అంహగళు CIE Marks	50
ఒందు ఎారఫ్ఫ్ర బొఠొధధనా అఱధధి Teaching hours/Week (L: T:P)	1-0-0	సేటిస్ట్రంఠ అంత్యద ङ゙రిల్ష్షియు అంశగళు SEE Marks	50
ఒట్ట్టు బొఠొధనలా అฝేధి Total Number of contact hour	13	ఱరిల్ష్షియు అఱఁధి Exam Hours	01
 1. To Create awareness regarding the necessity of learning local language for comfortable and healthy life. 2. To enable learners to Listen and understand the Kannada language properly. 3. To speak, read and write Kannada language as per requirement. 4. To train the learners for correct and polite conversation.			
dule-1			
Introduction, Necessity of learning a local language. Methods to learn the Kannada language. Easy learning of a Kannada Language: A few tips. Hints for correct and polite conservation, Listening and Speaking Activities Key to Transcription. Personal Pronouns, Possessive Forms, Interrogative words Hours)			
Module-2			
 Possessive forms of nouns, dubitive question and Relative nouns Numerals సేత్తుమి ఏిభి్తి త్రుత్యయ (అ, అడు, అథ్రు, అల్లి) Predictive Forms, Locative Case (3 Hours)			
Module-3			

Adjectives (3 Hours)
Module-4
Commands, encouraging and urging words (Imperative words and sentences) Potential Forms used in General Communication (2 Hours)
Module-5
verbs "iru and iralla" Corresponding Future and Negation Verbs Comparitive, Relationship, Identification and Negation words (2 Hours)
 At the end of the Course, The Students will be able 1. To understand the necessity of learning of local language for comfortable life. 2. To Listen and understand the Kannada language properly. 3. To speak, read and write Kannada language as per requirement. 4. To communicate (converse) in Kannada language in their daily life with Kannada speakers. 5. To speak in polite conversation.
Question paper pattern: SEE will be conducted for 50 marks. - The question paper will have 50 questions. Each question is set for 01 mark. - SEE Pattern will be in MCQ Model (Multiple Choice Questions) for 50 marks. - The duration of the examination is 01 Hour. CIE will be announced prior to the commencement of the course. - Three Unit Tests each of $\mathbf{2 0}$ Marks (Duration 01 hour). - Two assignments each of 10 Marks. - Two alternate assessment tools (AATs) for 20 Marks (duration 01 hour). - The sum of three tests, two assignments, and AATs will be out of 100 marks and will be scaled down to 50 marks.
Textbook: బళ్ళ శ్న్నడ లోలవzరు: డా. ఎలో. తిమ్మేలర

B.E ELECTRONICS AND TELECOMMUNICATION ENGINEERING Choice Based Credit System (CBCS) SEMESTER - III			
Universal Human Values- I (1:0:0) 1 (Effective from the academic year 2021-22)			
ourse Code	21UHV33	IE Marks	50
aching		EE Mar	50
Total Number of Lecture Hours	13	Exam Hours	01
Course objectives: This introductory course is intended to 1. Develop a holistic perspective based on self-exploration about themselves (human being). 2. Understand harmony in the human being. 3. Strengthening of self-reflection. 4. Develop commitment and courage to act.			
Module - 1			
Preamble: Significance and Scope of the course, Importance of the course in societal, political andeconomic growth of the nation. Introduction to Value Education: Understanding Value Education; Need and Basic guidelines for ValueEducation; Scope and Process. Self-exploration as the Process for Value Education: What is self- exploration; Process of selfexploration. Case study and Group Discussion 2 Hours			
Module-2			
Basic Human Aspirations: Continuous happiness and prosperity; Exploring happiness and prosperity; Methods to Fulfill the Basic Human Aspirations; Need for right understanding; Relationship and Physical Facilities. Case study and Group Discussion 2 Hours			
Module -			
Understanding human being as co-existence of the self and the Body: Understanding and distinguishing between the Needs of the Self and the Body- Quantitative, Qualitative, Knowing, Assuming,Recognizing and fulfilling in self and in body. Case study and Group Discussion 3 Hours			
Module -			
Harmony in self: Understanding self; Activities in self; Power of expectation, thought and desire;Conflicts or contradictions in self as a result of pre-conditioned desire; Realisation and Understanding. Case study and Group Discussion 3 Hours			
Module - 5			
Harmony with Body: Harmony of self with the body-Sanyama and Svasthya; Understanding and living with Sanyama; Nurturing of the body; Protection of the body; Right utilization of the body; Correct appraisal of our physical needs.			

Course outcomes: The students will be able to:

1. Understand the role of value education, self-exploration and harmony in self and with body.
2. Distinguish between values and skills, Self and the Body, Intention and Competence of anindividual.

Question paper pattern:

SEE will be conducted for 50 marks.

- The question paper will have 50 questions. Each question is set for 01 mark.
- SEE Pattern will be in MCQ Model (Multiple Choice Questions) for 50 marks.
- The duration of the examination is 01 Hour.

CIE will be announced prior to the commencement of the course.

- Three Unit Tests each of $\mathbf{2 0}$ Marks (Duration 01 hour).
- Two assignments each of 10 Marks.
- Two alternate assessment tools (AATs) for 20 Marks (duration 01 hour).
- The sum of three tests, two assignments, and AATs will be out of 100 marks and will be scaled down to 50 marks.

Textbooks

1. The Textbook A Foundation Course in Human Values and Professional Ethics, R R Gaur, R Asthana,G P Bagaria, 2 ${ }^{\text {nd }}$ Revised Edition, Excel Books, New Delhi, 2019. ISBN978-93-87034-47-1
2. The Teacher's Manual for A Foundation Course in Human Values and Professional Ethics, R R Gaur,R Asthana, G P Bagaria, $2^{\text {nd }}$ Revised Edition, Excel Books, NewDelhi, 2019. ISBN 978-93-87034-53-2

References

1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amar kantak, 1999.
2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
3. Slow is Beautiful - Cecile Andrews
4. Vivekananda - Romain Rolland (English)

Relevant websites, documentaries

1. Value Education websites, http://uhv.ac.in,
2. Story of Stuff, http://www.storyofstuff.com

B.E ELECTRONICS AND TELECOMMUNICATION ENGINEERING Choice Based Credit System (CBCS) SEMESTER - III	
Inter/Intra-Institutional Internship (Effective from the academic year 2021-22)	
Credits: 2	CIE:100 Marks
Duration: 3 Weeks	SEE: NA
Schedule: - During the int - During the int studentsadmi	dmitted to I semester. try diploma
Course Outcomes: C01. Acquire aca C02. Perceive am society an C03. Expose to r CO4. Build leade using virt C05. Intensify cr expressio C06. Write repor C07. Build leader facility in	elopment. ement with relevance to ge with experience. , and facility in d personal , and

Rubrics for Internal Evaluation (Total Marks: 100)

Indicator	Poor	Average	Good	Excellent
Acquired skills or knowledg e(10 Marks) (C01)	Not gained any skill /knowledge. OR Attended a fewsessions. 0-1 Marks	Partial skill/Knowledge gained. Only	Average skill/knowledge gained. Lack of Technical/ Knowledge. 5-7 Marks	Complete skill/knowled gegained. All Skills Acquired 8-10 Marks
Weekl y report (10 Marks) (C06)	Weekly report not submitted. OR Few days report wassubmitted. 0-1 Marks	One Weekly report submitted. 2-4 Marks	Two weekly reports submitted. 5-7 Marks	All three weekly reports submitted. 8-10 Marks
Presentatio n(10 Marks) (C05)	Absence for presentatio n.OR Presented after thedue date. 0-1 marks	Information is lacking/ unclear and communicated in such a way that the audience cannot understand the purpose of the evidenceof work and internship experiences. 2-4 Marks	Information is not presented in a clear manner and many details are missing related to the evidence work and internship experiences. 5-7 Marks	Information is presented in such a way that the audience can understand the purpose of the evidence of work and internship experiences. 8-10 Marks

Practical Knowledg e(10 Marks) (CO3)	Not gained any practical knowledge.OR Able to define basicconcepts. 0-1 Marks	Partial practical Knowledgegained. Less hands-on experience. 2-4 Marks	Average practical knowledge gained. Only few models are exhibited. 5-7 Marks	Complete practical knowledge gained. 8-10 Marks
Societal and environme ntal relevance (10 Marks) (CO2)	No relevance to society or environment (At- least one relevance). $\mathbf{0 - 1}$ Marks	Partial relevance to society environment. 2-4 Marks	Average relevance to society or environment. 5-7 Marks	Directly Relevant to society or environment. 8-10 Marks
Viva (10 Marks) (CO4)	Does not know anyinformation. OR Fair leadership quality/ teamwork/ cooperation.	Provides irrelevant information for all questions. Good leadership quality/ teamwork/ cooperation. 2-4 Marks	Provides incomplete information for all questions. Better leadership quality/ teamwork/ cooperation. 5-7 Marks	Provides complete information for all questions. Outstanding leadership quality/ teamwork/ cooperation. 8-10 Marks
Report (40 Marks)	Does not submit the report.	Report submitted doesnot fulfill the prescribedformat/	Report submitted partially fulfills the prescribed format/	Report submitted fulfills the prescribed format /

		submission after one	submission after one weeks (CO6)	0 Marks the deadline.		
weeksof the						
deadline.						
$\mathbf{2 5 - 3 2}$ Marks					\quad	submission in
:---						
par with the						
deadline.						
$\mathbf{3 3 - 4 0}$ Marks						

CIE and SEE Details for Scheme 2021

Course	CIE (Minimum Passing Marks 40\% of Max Marks)		SEE (Minimum Passing Marks 35\% of Max Marks)	
	Max Marks	Min Passing marks	Max Marks	Min Passing marks
Inter/Intra Institutional Internship	100	40	-	-

B.E ELECTRONICS AND TELECOMMUNICATION ENGINEERING Choice Based Credit System (CBCS) SEMESTER - III			
Analog Electronics (2:1:0) 3(Effective from the academic year 2021-22)			
Course Code	21EC35	CIE Marks	50
Tea	2:2:0	SEE Marks	50
Total Number of Contact Hours	40	Exam Hour	03
Course objectives: This course will enable students to: 1. Explain various BJT parameters, connections and configurations. 2. Understand BJT Amplifier, Hybrid Equivalent, Hybrid Models and Op-amp ICs. 3. Explain various types of FET biasing and amplifiers. 4. Examine Power amplifier circuits in different modes of operation 5. Make use of BJT, FET and Linear ICs to build Oscillator circuits.			
odule - 1			
Introduction: Significance and Scope of the course, Importance of the Course/Subject in Economic growth of Nation, Impact of the course to prInterovide solutions to Societal Problems, National Economy, Career Perspective and Innovations with current trends. BJT Biasing: Fixed Bias, Collector to base bias, Voltage divider bias, DC Load line and Operating Point. Small signal operation and Models: Collector current and transconductance, Base current and input resistance, Emitter current and input resistance, voltage gain, Separating the signal and the DC quantities, The hybrid Π model. MOSFETs: Biasing in MOS amplifier circuits: Fixing $V_{G S}$, Fixing V_{G}, Drain to Gate feedback resistor.			
Module - 2			
MOSFET Amplifier configuration: Basic configurations, characterizing amplifiers, CS amplifier with and without source resistance, Source follower. MOSFET internal capacitances and High frequency model: The gate capacitive effect, Junction capacitances, High frequency model. Frequency response of the CS amplifier: The three frequency bands, high frequency response, Low frequency response. Oscillators: BJT and FET based Phase shift oscillator, LC and Crystal Oscillators			
Module - 3			
Feedback Amplifier: General feedback structure, Properties of negative feedback, The Four Basic Feedback Topologies, The series-shunt, series-series, shunt-shunt and shunt-series amplifiers (Qualitative Analysis). Output Stages and Power Amplifiers: Introduction, Classification of output stages, Class A output stage, Class B output stage, Transfer Characteristics, Power Dissipation, Power Conversion efficiency, Class AB output stage, Class C tuned Amplifier.			
Module - 4			
Op-Amp general applications: Inverting and Non-inverting Amplifiers, DC and AC Amplifiers, Summing, Scaling and Averaging Amplifiers, Instrumentation amplifier, Comparators, Zero Crossing Detector, Schmitt trigger.			

	Hour
Module - 5	
Op-Amp Circuits: DAC - Weighted resistor and R-2R ladder, ADC- Successive approximation type, Small Signal half wave rectifier, Active Filters, First and second order low-pass and high pass Butterworth filters, Band-pass filters, Band reject filters. 555 Timer and its applications: 555 IC, Monostable and Astable Multivibrators, Applications of Astable Multivibrators. Summary of the course: The student will be able to design analog circuits for various Applications by understanding the basic working principle of the electronic devices. (9 Hours)	
Course C01: CO2: C03: C04: C05: C06:	ircuits and related to and Linear ort for the
Question paper pattern: SEE will be conducted for 100 marks. - The question paper will be set for 100 marks (duration of 03 hours) and marks scored will be proportionally scaled down to 50 marks. - The question paper will have ten questions. Each question is set for 20 marks. - There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), should have a mix of topics under that module. - The students have to answer 5 full questions, selecting one full question from each module.	
Textbooks: 1. Microelectronic Circuits, Theory and Applications, Adel S Sedra, Kenneth C Smith, Oxford,6th Edition, 2015. 2. Op-Amps and Linear Integrated Circuits, Ramakant A Gayakwad, Pearson Education, 4th Edition. 2000.	
Referen 1. 2.	andan G H, ill,2010.

B.E ELECTRONICS AND TELECOMMUNICATION ENGINEERING Choice Based Credit System (CBCS) SEMESTER - III			
Digital Electronics (2:1:0) 3 (Effective from the academic year 2021-22)			
Course Code	21EC36	CIE Marks	50
Teaching Hours/Week (L:T:P)	2:2:0	SEE Marks	50
Total Number of Contact Hours	40	Exam Hours	03
Course objectives:			
This course will enable students to: 1. Acquire basic knowledge of logic gates, combinational circuits and designs related to it. 2. Analyse working of arithmetic circuits, code converters, logic arrays 3. Apply the knowledge of flips flops to circuits based on flip flops 4. Design combinational and sequential circuits for specific applications. 5. Design and Analyse state machine from truth table, state graphs and vice versa			
Module - 1			
Principles of Combinational logic: Definition of Combinational Logic, Canonical forms, Generation of switching equations, Karnaugh maps $3,4,5$ variables, incompletely specified functions, Simplifying Max term equations, Quine-McClusky techniques - $3 \& 4$ variables. (9 Hours)			
odule - 2			
Analysis and design of combinational logic: Introduction, circuit design and analysis procedure. Arithmetic circuits: 2 bit multiplier, 2 bit Magnitude Comparator, Binary adder, binary subtractor, Carry Look Ahead Adder, Parallel Adder, Decoders, Encoders, Multiplexers, Decoders and multiplexers as Boolean function generators.			
Module - 3			
Sequential Circuits - I : SR Latch, The gated SR Latch, The Master-Slave Flip-Flops (PulseTriggered Flip-Flops): The Master-Slave SR Flip-Flops, The Master-Slave JK Flip-Flop, Edge Triggered Flip-Flop: The Positive Edge-Triggered D Flip. Sequential Logic Circuits:, Characteristic Equations, Registers, Shift registers, Counters based on Shift Registers, Binary Ripple Counters, Synchronous Binary counters			
Module - 4			
Sequential Circuit Design: Design of a Synchronous counters, Design of a Synchronous Mod 6 Counter using clocked D, T, or SR Flip-Flops. Mealy and Moore models. State Machine notations, Construction of state diagrams (8 Hours)			
Module - 5			
Applications of Digital Circuits : Synchronous Sequential Circuit Analysis and Design. Construction of state graphs for a SR, JK, D, and T circuits. Construction of a SR, JK, D and T circuits using state graphs. (8 Hours)			

Course outcomes: The students will be able to:
C01: Apply the knowledge of digital circuits to provide optimized solutions.
CO2: Analyse and Solve circuits based upon digital logic.
CO3: Design digital circuits based on the given problem statement or application
C04: Interpret the given case study situation related to applications of digital electronics.
C05: Develop a simple digital system using modern tool and present it in a team.
Question paper pattern:
SEE will be conducted for 100 marks.

- The question paper will be set for 100 marks (duration of 03 hours) and marks scored will be proportionally scaled down to 50 marks.
- The question paper will have ten questions. Each question is set for 20 marks.
- There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), should have a mix of topics under that module.
- The students have to answer 5 full questions, selecting one full question from each module.

CIE will be announced prior to the commencement of the course.

- Three Unit Tests each of $\mathbf{2 0}$ Marks (Duration 01 hour).
- Two assignments each of 10 Marks.
- Two alternate assessment tools (AATs) for 20 Marks (duration 01 hour).
a. The sum of three tests, two assignments, and AATs will be out of 100 marks and will be scaled down to 50 marks

TEXT BOOKS:

1. "Digital Logic Applications and Design", John M Yarbrough, Thomson Learning, 2001. 2. "Digital Principles and Design ", Donald D Givone, Tata McGraw Hill Edition, 2002.

REFERENCE BOOKS:

1. "Fundamentals of logic design", Charles H Roth, Jr; Thomson Learning, 2004.
2. "Logic and computer design Fundamentals", Mono and Kim, Pearson, Second edition, 2001.
3. "Logic Design", Sudhakar Samuel, Pearson/Saguine, 2007

B.E. ELECTRONICS AND COMMUNICATION ENGINEERING Choice Based Credit System (CBCS) SEMESTER - III			
Network Analysis (2:1:0) 3 (Effective from the academic year 2021-22)			
Course Code	21EC37		
Teaching Hours/Week (L:T:P)	2:2:0	EE Mark	50
otal Number of Contact Hour	40	xam Hours	
Course Objectives: This course will enable students to: 1. Describe basic network concepts emphasizing source transformation, source shifting, mesh and nodal techniques to solve for resistance/impedance, voltage, current and power. 2. Discuss network Superposition, Thevenin's and Norton's theorems, Maximum Power transfer theorem and apply them in solving the problems related to Electrical Circuits. 3. Interpret the behaviour of networks subjected to transient conditions. 4. Use applications of Laplace transforms to network problems. 5. Compute two port network parameters like $\mathrm{Z}, \mathrm{Y}, \mathrm{T}$ and h and their inter-relationships and applications			
Module - 1			
Introduction to the network theory, Significance and Scope of network theory, Impact of the network theory on Societal Problems/ Sustainable Solutions/ National Economy. Basic Concepts: Practical sources, Source transformations, Network reduction using StarDelta transformation, Loop and node analysis with linearly dependent and independent sources for DC and AC networks, Concept of super node and super mesh. Self study Component: Students are expected to verify the principle of KCL and KVL using Multisim Tool.			
Module			
Network Theorems: Superposition, Milliman's theorems, Thevenin's and Norton 's theorems, Maximum Power transfer theorem.			
Module - 3			
Transient behaviour and initial conditions: Behaviour of circuit elements under switching condition and their Representation, evaluation of initial and final conditions in RL, RC Circuits. Hours)			
Module - 4			
Laplace Transformation \& Applications: Solution of networks, step, ramp and impulse responses, waveform Synthesis. Self Study: Initial and Final value Theorem.			
Module - 5			
Two port network parameters: Definition of $\mathrm{Z}, \mathrm{Y}, \mathrm{h}$ and ABCD parameters, modelling with these parameters, and relationship between parameters sets. Resonance: Definition, Characteristics of Series and Parallel Resonance. Summary/Recap of all the modules: Applications: Circuit Creation and Simulation using Multisim Tool, Verification of Thevenin's, Norton's and Maximum power Transfer Theorem.			

Course outcomes:

The students will be able to:
CO1: Apply the knowledge of KVL and KCL to solve the problems related to different electrical circuits.
C02: Analyse given electrical circuit to arrive at a suitable conclusion.
C03: Interpret the given case study material related to the application of circuit analysis
C04: Perform in a group to simulate a given electrical circuit using Modern tool and submit the report for the same.

Question paper pattern:

SEE will be conducted for 100 marks.

- The question paper will be set for 100 marks (duration of 03 hours) and marks scored will be proportionally scaled down to 50 marks.
- The question paper will have ten questions. Each question is set for 20 marks.
- There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), should have a mix of topics under that module.
- The students have to answer 5 full questions, selecting one full question from each module.

CIE will be announced prior to the commencement of the course.

- Three Unit Tests each of $\mathbf{2 0}$ Marks (Duration 01 hour).
- Two assignments each of 10 Marks.
- Two alternate assessment tools (AATs) for 20 Marks (duration 01 hour).
a. The sum of three tests, two assignments, and AATs will be out of 100 marks and will be scaled down to 50 marks

Text books:

1. Charles K Alexander and Mathew N O Sadiku, "Fundamentals of Electric Circuits", Tata McGraw-Hill, 3 ${ }^{\text {rd }}$ Edition, 2003.
2. M.E. Van Valkenberg, "Network analysis", Prentice Hall of India, 3 ${ }^{\text {rd }}$ Edition, 2000.

Reference:

1. Roy Choudhury: "Networks and systems", New Age International Publications, 2 ${ }^{\text {rd }}$ Edition, 2006.
2. Hayt, Kemmerly and Durbin, "Engineering Circuit Analysis", Tata McGraw-Hill, $7^{\text {th }}$ Edition, 2010.
3. J. David Irwin /R. Mark Nelms, "Basic Engineering Circuit Analysis", John Wiley, 8 ${ }^{\text {th }}$ Edition, 2006.
4. Syed A. Nasar, "3000 Solved Problems in Electric Circuit " Schaum's solved problem series, Tata McGraw-Hill Publication.

B.E ELECTRONICS AND TELECOMMUNICATION ENGINEERING Choice Based Credit System (CBCS) SEMESTER - III			
Analog Electronics Laboratory (0:0:1) 1 (Effective from the academic year 2021-22)			
Course Code			
Total Number of Contact Hour			
Course objectives: This laboratory course enables students to get practical experience in design, assembly, testing and evaluation of 1. Rectifiers and Voltage Regulators. 2. Transistor amplifiers 3. Oscillators 4. Op-amp and Timer applications			
Experimen			
1. Conduct an experiment on diode clipping and clamping circuits for the given design specifications 2. Conduct an experiment on Rectifiers and Filters for the given design specifications 3. Conduct an experiment on Voltage regulators using Zener Diode 4. Design and implement Hartley and crystal oscillators 5. Design and implement the BJT common emitter amplifier using voltage divider bias with and without feedback and determine the gain bandwidth product from its frequency response. 6. Design and implement the FET amplifier and determine the gain bandwidth product from its frequency response. 7. Conduct an experiment on adder, integrator, and differentiator circuits 8. Design and implement Schmitt trigger for the given UTP and LTP values and obtain hysteresis. 9. Conduct an Experiment to Generate Oscillations using Astable Multivibrator Using IC 555 Timer.			
Open Ended Experiments (samples)- using simulation tool: 1. Design and implement a Regulated power supply for charging a mobile phone. 2. Demonstrate a Simple Touch Operated Call Bell using 555 Timer IC. 3. Conduct an experiment on Simple Day Night Street Lamp Controller using circuit.			
Course outcomes: The students will be able to: C01: Design and conduct experiment using electronic circuit for given specifications CO2: Write a report for the conducted experiment CO3: Conduct open ended experiments to real time application and write a report on the same.			
Semester End Exam pattern: - The SEE will be conducted for 100 marks and reduced to 50 Marks - Write up carries 15% of the maximum marks - Conduction of the experiment with tabulation and graphs carries 70% of the maximum marks - Viva-voce carries 15% of the maximum marks			

B.E ELECTRONICS AND TELECOMMUNICATION ENGINEERING Choice Based Credit System (CBCS) SEMESTER - III			
Digital Electronics Laboratory (0:0:1) 1 (Effective from the academic year 2021-22)			
Course Code	21ECL38B	CIE Marks	50
Teaching Hours/Week (L:T:P)	0:1:2	SEE Marks	50
Total Number of Contact Hours	30	Exam Hours	03
Course objectives: This course will enable students to: 1. Understand the SOP and POS expressions of digital circuits 2. Realize various combinational and sequential circuits.			
List of Experiments			
Part-A			
1. Conduct an experiment to Verify: i. Demorgan's Theorem for 2 variables. ii. The sum-of product and product-of-sum expressions using universal gates. 2. Design and verify i. Half Adder \& Full Adder using i) Basic gates ii) Universal gates. ii. Half subtractor \& Full subtractor using i) Basic gates ii) Universal gates. 3. Design and verify i. 4-bit Parallel Adder/Subtractor using IC 7483. ii. BCD to Excess-3 code conversion and vice-versa. 4. Design and verify i. 1-bit Comparator ii. 5-bit Magnitude Comparator using IC 7485. 5. Realize i. Adder \& Subtractor using IC 74153. ii. 4 -variable function using IC74151(8:1MUX). 6. Realize the JK, Master-Slave JK, D \& T flip-flops using NAND gates 7. Realize the following shift registers using IC7474/7495 SISO, SIPO, PISO, PIPO, Ring and Johnson counters. 8. Design and realize the following counters: i. Mod-N Counter using IC7490 / 7476 ii. Synchronous/Asynchronous counter using IC74192 9. Design Pseudo random sequence generator using IC 7495.			
Part-B			
Simulation experiments using any Open-source tool. 10. Design and verify Serial adder with accumulator 11. Design and verify Binary Multiplier and simulate using Simulation tool. 12. Design and verify Parity Generator.			
Open Ended Experiments (Samples):			
1. Conduct an experiment to demonstrate the working of Traffic Light Controller 2. Seven segment display			

Course outcomes: The students will be able to:
C01: Conduct experiments to realize the truth table of various combinational circuits, sequential circuits of digital electronics.
CO2: Write the report for the conducted experiments.
CO3: Perform open ended experiments related to applications of digital electronics.
Semester End Exam pattern:

- The SEE will be conducted for 100 marks and reduced to 50 Marks
- Write up carries 15% of the maximum marks
- Conduction of the experiment with tabulation and graphs carries 70% of the maximum marks
- Viva-voce carries 15% of the maximum marks

B.E ELECTRONICS AND TELECOMMUNICATION ENGINEERING			
Choice Based Credit System (CBCS)			
SEMESTER - III			

CO 3. Perform open ended experiments related to the selected real world applications.
Text Books:

1. Object Oriented Programming with C++ by Balagurusamy, 8th Edition, McGraw-Hill.
2. C++, the Complete Reference, 4th Edition, Herbert Schildt, TMH.

References:

1. C++ Primer, 3rd Edition, S.B.Lippman and J.Lajoie, Pearson Education.
2. The C++ Programming Language, 3rd Edition, B.Stroutstrup, Pearson Education
Semester End Exam pattern:

- The SEE will be conducted for 100 marks and reduced to 50 Marks
- Write up carries 15% of the maximum marks
- Conduction of the experiment with tabulation and graphs carries 70% of the maximum marks
- Viva-voce carries 15% of the maximum marks

B.E ELECTRONICS AND TELECOMMUNICATION ENGINEERING Choice Based Credit System (CBCS) SEMESTER - III			
Diploma Mathematics- I (0:0:0) NIL COMMON TO ALL BRANCHES (Effective from the academic year 2021-22)			
Course Code	21DIP31A	CIE Marks	100
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	
Total Number of Contact Hours	30	Exam Hours	3
Course Objectives:			
This course will enable students to			
1. Enable students to apply knowledge of mathematics in various engineering fields by making them to learn the basic tools of vector differentiation, calculus and elementary Linear Algebra. 2. Familiarize the important tools of Differential and Integral Calculus required to analyze the engineering problems.			
Module - I			
Introduction: Understanding the importance of the study of Complex Trigonometry, Calculus, Linear algebra and its applications in the field of Science, Engineering and Economics. Differential Calculus-I: Differentiation: Polar curves: angle between the radius vector and tangent, angle between two curves, pedal equation-problems; Maclaurin's series of single variable.			
Module - II			
Differential Calculus-II: Partial differentiation, Total derivatives-differentiation of composite functions, Jacobians-simple problems.			
Module - III			
Vector Differentiation: Velocity and acceleration of a particle moving on a space curve. Scalar and vector point functions. Gradient, Divergence, Curl-simple problems. Solenoidal and irrotational vector fields-Problems.			
Module - IV			
Linear Algebra: Introduction - Rank of matrix by elementary row operations - Echelon form. Gauss elimination method and approximate solution by Gauss-Seidel method. Eigen values and Eigen vectors of a square matrix of 2×2 \& Rayleigh's power method problems. (6 hours)			
Module - V			
Integral Calculus: Reduction formulae for $\int \operatorname{Sin}^{n} x d x, \int \operatorname{Cos}^{n} x d x$ (proofs with limits between 0 and $\pi / 2$), $\int \operatorname{Sin}^{m} x \operatorname{Cos}^{n} x d x$ ($\mathrm{m} \& \mathrm{n}$ are positive integers) (proof without limits) and problems on these Reduction formulae with limits. Double and triple integration-Simple examples.			
Recap/Summary of the Course.			hours)

Course outcomes:

The students will be able to:
CO1: Use derivatives to calculate rate of change of functions of a single and multivariate variable.
CO2: Analyze position, velocity and acceleration in two and three dimensions of vector Valued functions.
CO3: Learn techniques of integration including the evaluation of double and triple integrals.
C04: Solve system of Linear equations by using Matrix Algebra.
Question paper pattern:
CIE will be announced prior to the commencement of the course.

- 75 marks for test. Average of three tests will be taken.
- 25 marks for Alternate Assessment Method.

Textbooks:

1. B.S. Grewal, Higher Engineering Mathematics, 43rd Edition, Khanna Publishers, 2015.
2. B.V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill, 2010.
3. C. Pandurangappa, Advanced Mathematics II (Lateral entry bridge course textbook), 3rd Edition, Sanguine Publishers, 2015.

References:

1. N.P. Bali, Manish Goyal, A Text Book of Engineering Mathematics, Laxmi Publishers, 2014.
2. E. Kreyszig, Advanced Engineering Mathematics, 10th Edition, John Wiley \& Sons, 2015.
3. H.K. Dass, Er. Rajnish Verma, Higher Engineering Mathematics, S. Chand Private Ltd. , 2014.
4. S. Pal and S.C. Bhunia, Engineering Mathematics, 3rd edition, Oxford University Press, 2016.
