

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(Autonomous Institute affiliated to VTU)

Scheme of Teaching and Examination: Effective from AY 2021–22 Choice Based Credit System (CBCS)

UG PROGRAM: ELECTRICAL & ELECTRONICS ENGINEERING (EEE)						Semester: IV						
										Exami	nation	
Sl. No	Course Category	Course Code	Course Title	Teaching Dept.	To Hou	eaching rs /Wee	s ek	Credi ts	Duration in Hours	CIE Marks	SEE Marks	Total Marks
					L	Т	Р					
1	BS	21MTA41	Numerical Methods, Complex Variable and Sampling Theory	MAT	3	1	1	4	3	50	50	100
2	HS	21CIP42	Constitution of India and Professional Ethics	HS	1	0	0	1	1	50	50	100
3	UHV	21UHV43	Universal Human Values-II	HS	1	0	0	1	1	50	50	100
4	HS	21HSS44	Environmental Studies	HS	2	0	0	2	2	50	50	100
5	PC	21EE45	Electrical Machines-II	EEE	2	2	0	3	3	50	50	100
6	PC	21EE46	Power Electronics	EEE	3	0	0	3	3	50	50	100
7	PC	21EE47	Digital System Design	EEE	3	0	0	3	3	50	50	100
8	PC	21EEL48A	Electrical Machines Laboratory-II	EEE	0	1	2	1	3	50	50	100
9	PC	21EEL48B	Power Electronics Laboratory	EEE	0	1	2	1	3	50	50	100
10	PC	21EEL48C	Digital System Design Laboratory	EEE	0	1	2	1	3	50	50	100
			TOTAL		15	6	7	20		500	500	1000

	Course prescribed to Lateral entry Diploma holders admitted to IV Semester B.E.											
2	NCMC	21DIP41A	Diploma Mathematics-II	MAT	3	0	0	0	3	100		100

• For Lateral entry students Assessment of Internship-I to be conducted during IV semester.

• The Assessment Pattern for 1/2/3 credit courses shall be done as per the VTU guidelines.

• BS-MTX (X-Variable) Eg: Core branches: ME, CV, EEE, ETE, ECE-**MTA**, Digital branches: CSE, ISE, AIML- **MTB**.

• Additional Mathematics I and II shall not be considered for vertical progression as well as for the calculation of SGPA and CGPA, but completion of the courses shall be mandatory for the award of degree.

• Successful completion of the course Additional Mathematics-II shall be indicated as satisfactory in the grade card. Non completion of the same shall be indicated as unsatisfactory.

B.E. ELECTRICAL AND ELECTRONICS ENGINEERING

Choice Based Credit System (CBCS) SEMESTER - IV

Numerical Methods, Complex Variable and Sampling Theory (3:1:1) 4

(Common to ECE, ETE, EEE, MECH & CIVIL Branches)

(Effective from the academic year 2021-22)

Course Code	21MTA41	CIE Marks	50
Teaching Hours/Week (L:T:P)	3:1:1	SEE Marks	50
Total Number of Contact Hours	50	Exam Hours	3

Course Objectives:

This course will enable students to:

- 1. Apply the concept of Numerical Techniques, probability distribution and stochastic processes to analyze problems arising in the Science and Engineering field.
- 2. Analyze engineering problems by applying the concept of Complex Analysis, Curve fitting and Statistical Methods.
- 3. Apply the important analytical tools for solving partial differential equations arising in engineering applications.

Module - I

Introduction: Understanding the importance of the study of Complex Analysis, Transformations, Numerical techniques, Statistics, Probability and Sampling Distributions and their applications in the field of Science, Engineering, Business & Research.

Numerical Methods: Numerical solution of algebraic and transcendental equations by Regula Falsi method and Newton Raphson method.

Numerical solution of ordinary differential equations of first order and first degree, Taylor's series method, Modified Euler's method, 4th order Runge -Kutta method, Milne's predictor and corrector methods.

Self-Learning Component: Picard's method

Lab Session 1:

- 1. Solution of differential equation using Euler Method, 4th order Runge- Kutta method.
- 2. Determination of roots of a polynomial by Newton Raphson method, Regula Falsi method.
- (10 Hours)

Module – II

Complex Variables: Analytic functions - Cauchy-Riemann equations in Cartesian and Polar forms, Construction of analytic functions by Milne's method. Complex line integrals - Cauchy's theorem and Cauchy's integral formula.

Transformation: Conformal transformation, discussion of transformations: $w = z^2, w = e^z$, $w = z + \frac{1}{z}$ ($z \neq 0$). Bilinear transformation-problems. **Self-Learning Component:** Residue, poles, Cauchy's Residue theorem (without proof) and

problems.

Lab Session 2:

- 1. Conformal mapping using Matlab for $W = e^z$, $W = z^2$, $W = z + \frac{1}{z}$ ($z \neq 0$), complex valued functions.
- 2. Compute residues and poles for complex functions.

Module - III

(10 Hours)

Partial Differential Equations: Formation of PDEs by elimination of arbitrary constants / functions, Solution of non-homogeneous PDE by direct integration, Homogeneous PDEs involving derivative with respect to one independent variable only, Solution of Lagrange's linear PDE. Solution of One-dimensional heat and wave equations by method of separation of variables. **Self-Learning Component:** Derivation of One-dimensional heat and wave equations by method of separation of variables.

Lab Session 3:

- 1. Formation of PDE by eliminating arbitrary constant and function.
- 2. Solution of Heat equation.

(10 Hours)

Module – IV Vector Integration: Line integrals – problems, Surface and Volume integrals - definition, Green's theorem in a plane, Stoke's theorem and Gauss Divergence theorem (without proof) - problems. Self-Learning Component: Proof of Green's theorem in a plane.

Lab Session 4:

- 1. Evaluation of line integral.
- 2. Evaluate Green's Theorem in a plane.

(10 Hours)

(10 Hours)

Module – V

Sampling Theory: Sampling, Sampling distributions, standard error, test of hypothesis for means and proportions, confidence limits for means, student's t-distribution & Chi-square distribution as a test of goodness of fit.

Stochastic process: Stochastic processes, probability vector, stochastic matrices, fixed points, regular stochastic matrices, problems.

Self-Learning Component: Test of hypothesis for difference of means and difference of Proportions.

Lab Session 5:

- 1. Testing of hypothesis using Chi-square distribution.
- 2. Testing of hypothesis using t distribution.

Recap/Summary of the Course.

Course Outcomes:

The students will be able to:

- CO1: Solve order ordinary differential equations arising in engineering problems using single step and multistep numerical methods.
- CO2: Explain the concepts of analytic functions, describe conformal and Bilinear transformation arising in field theory and signal processing.
- CO3: Analyze a variety of partial differential equations and solution by exact methods/method of separation of variables.
- CO4: Apply Green's Theorem, Divergence Theorem and Stoke's theorem in various applications in the field of electro-magnetic and gravitational fields and fluid flow problems.
- CO5: Demonstrate testing of hypothesis of sampling distributions and illustrate examples of Markov chains related to discrete parameter stochastic process.

Question paper pattern:

SEE will be conducted for 100 marks.

- The question paper will have ten questions. Each question is set for 20 marks.
- There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), should have a mix of topics under that module.
- The students have to answer 5 full questions, selecting one full question from each module.

CIE will be conducted for 100 marks.

- Three Unit Tests each of **20 Marks** (Duration 01 hour).
- Two assignments each of 10 Marks.
- Two alternate assessment tools (AATs) from the list shall be planned to attain the COs and POs for **20 Marks** (duration 01 hours).

• The sum of three tests, two assignments, and AATs will be out of 100 marks and will be scaled down to 50 marks.

Textbooks:

- **1.** B.S. Grewal, "Higher Engineering Mathematics", 43rd Edition, Khanna Publishers, 2015.
- **2.** E. Kreyszig, "Advanced Engineering Mathematics", 10th Edition, John Wiley & Sons, 2015.
- **3.** B.V. Ramana, "Higher Engineering Mathematics", 6th Edition, Tata McGraw-Hill, 2010.

- **1.** N.P. Bali, Manish Goyal, "A Text Book of Engineering Mathematics", Laxmi Publishers, 2014.
- **2.** H.K. Dass, Er. RajnishVerma, "Higher Engineering Mathematics", 3rd Edition, S. Chand publishers, 2014.
- **3.** P. Kandasamy, K. Thilagavathi, K. Gunavathi, "Engineering Mathematics", Vol. III, 2001.
- **4.** S.S. Sastry, "Introductory Methods of Numerical Analysis", 4th Edition, Prentice Hall of India, 2010.

B.E. ELECTRI	CAL AND ELECTRONICS ENGINE	ERING					
	Choice Based Credit System (CBCS)						
SEMESTER – IV							
Constitution of I	(Common to all Branchos)						
(Effect	(Effective from the academic year 2021-2022)						
Course Code	21CIP32/42	CIE Marks	50				
Teaching Hours/Week (L: T:P)	1-0-0	SEE Marks	50				
Total Number of Lecture Hours	13	Exam Hours	01				
Course objectives:							
This course will enable students	to						
1. Familiarise with the Indian	Constitution and have legal knowledge enabli	ing them to take					
competitive exams and und	erstand complex political issues.	1	5 4h a				
2. Understand engineering ethics	ion liability risk and safety at work place	i consciousness of	the				
issues related to the profess	ion, hadnity, fisk and safety at work place.						
	Module – 1						
Preamble: Significance and Scor	be of the course, Importance of the course	in societal, politi	cal and				
economic growth of the nation.							
Introduction and Basic inform	ation about the Indian Constitution:		1 . 6 4 .				
Introduction, Definition and sign	f the Indian constitution, Histor	rical Background	1 of the				
Indian Constitution. Framing o	the Indian constitution: Role of the	Constituent Ass	sembly,				
Hours	the Constitution of India.		2				
nours							
	Module – 2						
Fundamental Rights, Directive	Principles of State Policy and Fundam	ental Duties:					
Fundamental Rights and its limit	tations, Directive Principles of State Poli	cy: Importance	and its				
relevance. Fundamental Duties a	nd their significance. Case Studies	3 H	Hours				
	Module – 3						
Union and State Administration	n:						
The Union Executive-The Presid	ent and The Vice President, The Prime Mi	nister and The C	Council				
of Ministers, The Union Legisl	ature -Lok Sabha & Rajya Sabha, The	Union Judiciary	y- The				
Supreme Court of India and its ju	urisdiction.						
The State Executive-The Govern	ors, The Chief Ministers and The Council	of Ministers, Th	e State				
Legislature- Legislative Assemb	ly and Legislative Council, The State Jud	iciary- The Stat	e High				
Courts and its jurisdiction.		4 H	Iours				
	Module – 4		<i>·</i> · · · ·				
Elections, Constitutional Amer	Elections, Constitutional Amendments, Emergency Provisions and Special Constitutional						
Flections-Electoral Process in	India Election Commission of India:	Powers & Fur	nctions				
Constitutional Amendments- me	thods and Important Constitutional Ame	endments ie 42^{r}	$^{\rm nd}$, 44 th ,				
61 st ,74 th , 76 th , 77 th , 86 th ,91 st , 100,	101 st , 118 th , Emergency Provisions-types	and its effect,	, ,				
Special Constitutional Provisions for Schedule Castes, Schedule Tribes & Other Backward Classes							
Women & Children.		2	Hours				
	Module – 5						
Professional Ethics:							
Definition of Ethics, Scope and	Aim of Professional and Engineering Etl	hics, Code of et	hics as				
defined in the Institution of Eng	ineers (India), Responsibilities of Enginee	ers and impedim	ents to				

responsibilities, Honesty, Integrity and Reliability of Engineers, Risk, Safety and Liability in Engineering, Case Studies. **2 Hours**

Course outcomes: The students will be able to:

CO1. Understand and have constitutional knowledge and legal literacy

CO2. Understand Engineering and Professional ethics and responsibilities of Engineers.

Assessment Details (both CIE and SEE): Kannada, Constitution of India and Professional Ethics and Universal Human Values

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum mark which is 20 marks. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE and SEE taken together

Continuous Internal Evaluation:

Three Tests each of **20 Marks.** (duration 01 hour)

1. First test at the end of 5th week of the semester

2. Second test at the end of the 10th week of the semester

3. Third test at the end of the 15th week of the semester

Two assignments each of **10 Marks**

4. First assignment at the end of 4th week of the semester

5. Second assignment at the end of 9th week of the semester

Two alternate assessment tools (AATs) from the list shall be planned to attain the COs and POs for **20 Marks**

6. At the end of the 13th week of the semester

The sum of three tests, two assignments and AATs will be out of 100 marks and will be scaled down to 50 marks.

CIE methods/question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination (SEE):

SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject.

The question paper will have 50 questions. Each question is set for 01 mark.

SEE Pattern will be in MCQ Model (Multiple Choice Questions) for 50 marks. The duration of the examination is 01 Hour.

Textbooks

 Durga Das Basu, Introduction to the Constitution of India, Lexis Nexis, 20th Edn, 2011.
 Shubham Singles, Charles E. Haries and Et al, Constitution of India and Professional Ethics, Cengage Learning India Private Limited, Latest Edition, 2018.

References

1. M.Govindarajan, S.Natarajan, V.S.Senthilkumar, Engineering Ethics, Prentice –Hall of India Pvt. Ltd. New Delhi, 2004.

2. M.V.Pylee, An Introduction to Constitution of India, Vikas Publishing, 2002.

B.E. ELECTRICAL AND ELECTRONICS ENGINEERING Choice Based Credit System (CBCS)							
	SEMESTER – IV						
Unive	Universal Human Values- II (1:0:0) 1						
(Elle		1000000000000000000000000000000000000		50			
Lourse Lode	210HV43		IE Marks	50			
Teaching Hours/Week (L: T:P)	1-0-0	S	EE Marks	50			
Total Number of Lecture Hours	13	E	xam Hours	01			
Course objectives:	1.						
This introductory course is intende	ed to	an about family as	sister and not				
1. Develop a holistic perspective b	ased on self-explorati	on about family, so	ciety and nat	ure/existence.			
3 Strengthening of self-reflection	ily, society and nature	existence					
4 Develop commitment and coura	ge to act						
	Module -	· 1					
Preamble: Significance and Score	pe of the course. Imr	ortance of the cou	rse in societa	al, political and			
economic growth of the nation.	r,						
Harmony in the Family: Underst	anding values in hum	an relationships; Fa	mily as basic	unit; Harmony			
in family, Recognizing feelings in	relationships-trust, res	pect, affection, care	e, guidance, re	everence, glory,			
gratitude and love.							
Case study and Group Discussio	n			3 Hours			
	Module -	- 2					
Harmony in Society: Extending a dimensions of human endeavor; H	relationship from fam armony from family o	ily to society; Com order to World fami	prehensive h ly order.	uman goal, Five			
Case study and Group Discussio	n			2 Hours			
	Module -	- 3					
Harmony in the Nature : Underst and mutual fulfillment; four orders	anding the harmony is of nature; Recyclabil	n the Nature; Interc ity, Natural charac	onnectedness teristics.	, self- regulation			
Case study and Group Discussio	n			3 Hours			
	Module -	- 4					
Harmony in Existence: Understan	nding existence as co-	existence; Space; C	Co-existence	of units in space,			
various attributes of units and space	e, Role of a human be	ing in existence.		_			
Case study and Group Discussio	n			2 Hours			
	Module -	- 5					
Implications of the above Holisti	c Understanding of 1	Harmony on Profe	essional Ethio	CS			
Natural acceptance of human valu Education, Humanistic Constitutio Holistic Technologies. Typical Case Studies, Strateg	ues; Definitiveness of n and Humanistic Uni ies for Transition	Ethical Human C versal Order; Com towards Value-b	onduct; Basis petence in pro pased Life	and Profession			
Course outcomes: The students wil	l be able to:			5 110015			
			• . • .				
1. Understand the role of a huma value inputs in a classroom an	an being in ensuring han d start applying them in	mony in family, soc their life and profes	ety and nature	e, significance of			

2. Distinguish between values and skills, ethical and unethical practices, happiness and accumulation of physical facilities, Intention and Competence of an individual etc and start working out the strategy to actualize a harmonious environment wherever they work

Assessment Details (both CIE and SEE): Kannada, Constitution of India and Professional Ethics and Universal Human Values

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum mark which is 20 marks. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE and SEE taken together

Continuous Internal Evaluation:

Three Tests each of **20 Marks.** (duration 01 hour)

- 1. First test at the end of 5th week of the semester
- 2. Second test at the end of the 10th week of the semester
- 3. Third test at the end of the 15th week of the semester

Two assignments each of **10 Marks**

- 4. First assignment at the end of 4th week of the semester
- 5. Second assignment at the end of 9th week of the semester

Two alternate assessment tools (AATs) from the list shall be planned to attain the COs and POs for **20** Marks

6. At the end of the 13th week of the semester

The sum of three tests, two assignments and AATs will be out of 100 marks and will be scaled down to 50 marks.

CIE methods/question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination (SEE):

SEE will be conducted as per the scheduled timetable, with common question papers for the subject. The question paper will have 50 questions. Each question is set for 01 mark.

SEE Pattern will be in MCQ Model (Multiple Choice Questions) for 50 marks. The duration of the examination is 01 Hour.

Textbooks

The Textbook A Foundation Course in Human Values and Professional Ethics, R R Gaur, R Asthana, G P Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN978-93-87034-47-1

The Teacher's Manual for *A Foundation Course in Human Values and Professional Ethics*, R R Gaur, R Asthana, G P Bagaria, 2nd Revised Edition, Excel Books, NewDelhi, 2019. ISBN 978-93-87034-53-2

References

Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amar kantak, 1999. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004. Small Is Beautiful: A Study of Economics as if People Mattered, E. F. Schumacher, 1973, Blond & Briggs, UK Vivekananda - Romain Rolland (English)

Relevant websites, documentaries

Value Education websites, <u>http://uhv.ac.in</u>, Story of Stuff, *http://www.storyofstuff.com*

B.E. ELECTRICAL AND ELECTRONICS ENGINEERING Choice Based Credit System (CBCS) SEMESTER – IV						
Environmental Studies (2:0:0) 2						
(Comr	non to all Branches)					
(Effective from	the academic year 202	1-22)				
Course Code	21HSS44	CIE Marks	50			
Teaching Hours/Week (L:T:P)	2:0:0	SEE Marks	50			
Total Number of Contact Hours	Total Number of Contact Hours26Exam Hours02					
Course Objectives:	Course Objectives:					
 Recognize the ecological basis for regional and global Environmental issues, and lead by example as an environmental steward. Apply systems concepts and methodologies to analyze and understand interactions between social and environmental processes. Analyze the trans-national character of environmental problems and ways of addressing them, including interactions across local to global scales. Demonstrate proficiency in quantitative methods, qualitative analysis, critical thinking, and written and oral communication needed to conduct high-level work as environmentalists. Module – 1 Introduction: Relevance of the Subject to Historical and real-time Global, Economic and Societal Scenario. Internship and Job Opportunities in the current scenario. Ecosystems (Structure and Function): Forest, Desert, Wetlands, Riverine, Oceanic and Lake. Biodiversity: Types, Value; Hot-spots; Threats to Biodiversity. 						
	Module – 2					
Environmental Pollution & Abateme Pollution; Noise pollution; Soil Pollution	ent (with Case-studies and Air Pollution.	s): Surface and Grou	and Water			
*Field work: Visit to a local polluted Site document environmental pollution and rec	-Urban/Rural/Industrial/ commend remedial meas	Agricultural, so as to c sures.	(5 Hours) bserve and			
	Module – 3					
Waste Management & Public Health wastes; E-wastes; Industrial and Municipa	Aspects: Bio-medical al Sludge.	Wastes; Solid waste;	Hazardous			
(5 Hours) *Field work: Visit to a local polluted Site-Urban/Rural/Industrial/Agricultural, so as to observe and document environmental impacts and recommend remedial measures.						
	Module – 4					
Global Environmental Concerns (C depletion/recharging, Climate Change; Ad	oncept, policies and cid Rain; Ozone Depleti	case-studies): Gro on; Fluoride problem	und water in drinking			

water; Cloud Seeding, and Carbon Trading.

(5 Hours)

***Field work:** Visit to a Green Building, followed by understanding of process and its brief documentation.

Module – 5

Latest Developments in Environmental Pollution Mitigation (Concept and Applications): G.I.S. and Remote Sensing, Environment Impact Assessment (E.I.A.), Environmental Management Systems (E.M.S.), ISO14001.

Case Studies: Environmental Stewardship, Environmental NGOs.

***Field work:** Visit to an Environmental Engineering Laboratory / Water Treatment Plant/Wastewater treatment Plant, followed by understanding of process and its brief documentation

Summary of the Course

(6 Hours)

(*Note: Any 1 among the 5 Field works is mandatory from the Exercises discussed in across the 5 modules, and Students have to submit a report)

Course outcomes:

The students will be able to:

CO	Appraise the significance of ecological systems under the ambit of environment.
1:	
CO	Analyze for the consequences owing from anthropogenic interactions on the
2:	environmental processes.
CO	Recommend solutions in the Anthropocene Epoch, with an in-depth
3:	understanding of the interdisciplinary facets of environmental issues.
CO	Elucidate the trans-national character of environmental problems and ways of
4:	addressing them.
CO	Appraise latest developments, concerns and ethical challenges associated with
5:	Environmental Protection.

Teaching Practice:

- Classroom teaching (Chalk and Talk)
- ICT Power Point Presentation
- Audio & Video Visualization Tools
- Case Studies: Real-life Article Inferential Discussion
- Site-visit and Reporting

Question paper pattern:

- SEE will be conducted for 50 marks, and will comprise of 50 MCQs. The duration of exam is 2 hours.
- CIE will be conducted for 40 marks. It will be for 1-hour duration; it shall consist of 40 MCQs, each carrying 1 mark.
- CIE will be announced prior to the commencement of the course.
- Two assignments ought to be submitted each of 10 Marks

- One alternate assessment tools (AATs) from the list shall be planned to attain the COs and POs for 20 Marks (duration 01 hours)
- The average of three tests, two assignments, and AATs will be out of 100 marks and will be scaled down to 50 marks.

Text Books

- 1. Rajesh Gopinath and N. Balasubramanya, "Environmental science and Engineering", 1st Edition, City of Publisher, Cengage Learning India Private Limited, 2018.
- **2.** J. S. Singh, S. P. Singh and S. R. Gupta, "Ecology, Environmental Science and Conservation", India, S. Chand Publishing, 2017.

- 1. M. Gadgil and R. Guha, "This Fissured Land: An Ecological History of India", Univ. of California Press, 1993.
- **2.** E. P. Odum and H. T. Odum, "Fundamentals of Ecology", Philadelphia: Saunders Publisher, 1971.
- **3.** M. L. Mckinney, "Environmental Science systems & Solutions", Web enhanced Edition, City of Publisher, R. M. Publisher, 1996.

B.E. ELECTRICAL A	AND ELECTRONICS Based Credit System (CB SEMESTER – IV	S ENGINEERING ^(S)	
Electrical	Machines - II (2:1:0)	3	
(Effective fror	n the academic year 2021-	22)	
Course Code	21EE45	CIE Marks	50
Teaching Hours/Week (L:T:P)	2:2:0	SEE Marks	50
Total Number of Contact Hours	40	Exam Hours	3
Course Objectives:		· · ·	
This course will enable students to:			
1. Understand the constructional fe	atures, classification o	f DC and AC rotating n	nachines
with its performance for differen	t loading conditions	C	
2. Analyse the operational behavio	ur of machines and its	applications	
3. Explain the concept of synchroni	sation of alternators w	vith infinite bus and pa	rallel
operation of alternators		_	
	Module – 1		
Introduction: Role of electrical made	chines in nation's pow	ver generation, its per	formance
analysis and synchronization method	s adopted in practical	applications.	
DC GENERATOR- Types of armat	ure winding, EMF e	quation, no-load cha	racteristic,
armature reaction, load characteristi	cs. Commutation, type	s of Commutation, cor	nmutation
difficulties, interpoles.			
			(8hours)
	Module – 2		
DC Motors- Back EMF and its sign	nificance, Torque equa	tion, Application of m	notors. DC
motor starters, Special DC motors-	permanent magnet mo	otor, brushless DC mot	ors.
Testing of DC machines - Direct a	nd indirect methods,	predetermination of l	losses and
efficiency by Swinburne's, Hopkins	on's and Field Tests. S	peed control of DC shu	int and DC
series motors.			
			(8hours)
	Module – 3		
Synchronous Machines:			
Synchronous generators: Generat	ed EMF, effect of distri	bution and chording o	f winding,
harmonics-causes, reduction and el	imination. Armature r	eaction, synchronous i	reactance,
leakage reactance.			
Synchronous Motor			
Principle of operation, methods o	of starting, V and inv	erted V curves, appli	cations of
synchronous machines.	C		
5			(8hours)
	Module – 4		
Voltage regulation and methods	of synchronization:		
OC and SC tests, Voltage regulation.	determination of volta	age regulation by EMF	, MMF and
ZPF methods. Slip test on salient	t pole alternator, vol	tage regulation of sa	lient pole
alternator using X_d and X_q .	. ,	5 5	ł
			(8 hours)
	Module – 5		
Synchronization of alternators:			
Need and conditions for parallel ope	eration of alternators, N	/lethods of synchronizi	ng a three
phase alternator to bus bars. Load s	haring between two a	lternators in parallel.	-

Power angle characteristics, Effect of change in excitation and effect of change in load for both generating and motoring modes. Hunting and Damping,

Recap: Concepts of basic principles of energy conversion in generators, construction, its characteristics and various testing methods adopted in performance analysis.

(8 hours)

Course Outcomes: The students will be able to:

CO1: **Describe** the operating principles and characteristics of DC and Synchronous machines.

CO2: **Describe** the methods of testing and Synchronizing methods of synchronous machines.

CO3: **Analyse** the performance of various machines.

Question paper pattern:

SEE will be conducted for 100 marks.

- The question paper will be set for 100 marks and marks scored will be proportionally scaled down to 50 marks
- The question paper will have ten questions. Each question is set for 20 marks.
- There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), should have a mix of topics under that module.
- The students have to answer 5 full questions, selecting one full question from each module.

CIE will be conducted for 100 marks.

- Three Unit Tests each of **20 Marks** (Duration 01 hour).
- Two assignments **each of 10 Marks**.
- Two alternate assessment tools (AATs) from the list shall be planned to attain the COs and POs for **20 Marks** (duration 01 hour).
- The sum of three tests, two assignments, and AATs will be out of 100 marks and will be scaled down to 50 marks.

Text Books:

- 1. D. P Kothari," Electrical Machines", et al McGraw Hill, 4th edition 2011
- 2. Dr. P.S. Bhimbra, "Electrical Machinery", Khanna Publications, 7th Edition, 2007
- 3. Abhijit Chakraborthy, "Electric Machines", McGraw Hill Education, 2015

- 1. Ashfaq Husain, "Electric Machines", DhanpatRai and Co, Second Edition, 2014
- 2. M. G. Say, "Performance and Design of Alternating Current Machines", John Wiley and Sons Publications, 3rdEdition,2002
- 3. A S Langsdorf, "Alternating current Machines", McGraw Hill Education, 1984.

B.E. ELECTRICAL AND ELECTRONICS ENGINEERING					
Ch	Choice Based Credit System (CBCS)				
	SEMESTER – IV				
Power Electronics (3:0:0) 3					
(Effective	from the academic year 2021 -2022	2)			
Course Code	21EE46	CIE Marks	50		
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	50		
Total Number of Contact Hours	40	Exam Hours	3		

Course objectives:

This course will enable students to:

- 1. Give an overview of applications of power electronics, different types of power semiconductor devices, their switching characteristics.
- 2. Explain the techniques for design and analysis of single phase diode rectifier circuits
- 3. Explain different power transistors, their steady state and switching characteristics.
- 4. Explain different types of Thyristors, their gate characteristics and gate control requirements.
- 5. Explain the design, analysis techniques, performance parameters and characteristics of controlled rectifiers, Voltage controllers, DC- DC and DC -AC converters.

Module – 1

Introduction: Significance and Scope of the course, Impact of the course on Societal Problems - Sustainable Solutions, Career Prospective, Latest research trends and innovations.

Power semiconductor devices: Application of power electronics, Types of power electronic circuits, Peripheral effects, Characteristics and specifications of switches. Power semiconductor devices, Control characteristics of power devices, Device choices.

Power Diodes: Introduction, Diode characteristics, Reverse recovery characteristics, Diode types, Diode circuits with DC source connected to R and RL load, Single-phase Full-Wave Rectifiers with R load , Single-phase Full-Wave Rectifier with RL Load.

(8 hours)

Module – 2

Power Transistors: Introduction, Bipolar Junction Transistors: Steady State Characteristics, Switching Characteristics, Switching Limits. Power MOSFET: Steady state characteristics, Switching characteristics. IGBTs: Steady state characteristics, Switching characteristics. **Gate Drive Circuits:** MOSFET Gate Drive, Isolation of Gate Drives

(8 hours)

Module – 3

Thyristors: Introduction, Thyristor characteristics, Two- transistor model, Thyristor turn-on and turn-off, Series and Parallel operation of thyristors, di/dt and dv/dt protection, DIACs, TRIACs, Thyristor Firing Circuits, Unijunction Transistor, Pulse transformers and Opto-couplers.

(8 hours)

Module – 4

Controlled Rectifiers: Introduction, Single-Phase Half Wave converter with R Load, Single-Phase Half Wave converter with RL Load, Single-Phase Half Wave converter with RL Load and Freewheeling Diode, Single-Phase Full Wave converter with RLE Load, Single-Phase Dual converters, Three-Phase Full Wave converter.

AC Voltage Controllers: Introduction, Principle of Phase control & Integral cycle control, Single-Phase Full Wave Controllers with Resistive Loads, Single-Phase Full-Wave Controllers with Inductive Loads.

(8 hours)

Module – 5

DC-DC Converters: Introduction, Performance parameters, Principle of step-down operation, Step down converter with RL load, Principle of step up operation, Step-up converter with R load, Converter classification.

DC-AC Converters: Introduction, Principle of operation, Performance parameters, Single phase half and full- bridge inverter with R and RL load, Three-phase inverters, Voltage control of single-phase inverter.

Recap: Summary of various power semiconductor devices and their applications in different converters.

(8hours)

Course outcomes:

The students will be able to:

CO1: Explain different types of power semiconductor devices and circuits.

CO2: Analyze the operation, characteristics, gate control circuits of power transistors and thyristors.

CO3: Analyze the operation of different power converters.

CO4: Evaluate the performance parameters of power converters.

Question paper pattern:

SEE will be conducted for 100 marks.

- The question paper will be set for 100 marks and marks scored will be proportionally scaled down to 50 marks
- The question paper will have ten questions. Each question is set for 20 marks.
- There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), should have a mix of topics under that module.
- The students have to answer 5 full questions, selecting one full question from each module.

CIE will be conducted for 100 marks.

- Three Unit Tests each of **20 Marks** (Duration 01 hour).
- Two assignments each of 10 Marks.
- Two alternate assessment tools (AATs) from the list shall be planned to attain the COs and POs for **20 Marks** (duration 01 hour).
- The sum of three tests, two assignments, and AATs will be out of 100 marks and will be scaled down to 50 marks.

Textbooks

- 1. M. H. Rashid, "Power Electronics: Circuits, Devices and Applications", Pearson, 4th Edition, 2014.
- 2. P. S. Bimbhra, "Power Electronics", Khanna Publishers, 5th Edition, 2012.
- 3. Ned Mohan, Tore M. Undeland, William P. Robbins, "Power Electronics converters, applications and design", Wiley, 3rd edition, 2014.

- 1. VedamSubramanyam, "Power Electronics", Revised Second Edition, New Age International Publishers, 2006.
- 2. Daniel W Hart, "Power Electronics", McGraw Hill, 1st Edition, 2011.

B.E. ELECTRICAL AND	ELECTRONICS ENGINE	ERING			
SEMESTER – IV					
Digital System Design (3:0:0) 3 (Effective from the academic year 2021-22)					
Course Code	21EE47	CIE Marks	50		
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	50		
Total Number of Contact Hours	40	Exam Hours	3		
Course objectives: This course will enable students to: 1. Design combinational circuits. 2. Design Sequential circuits. 3. Gain knowledge on Memories & its	use				
N	Iodule – 1				
Introduction: Significance and Scope of the Digital Electronics, Importance of the Course in Economic growth of Nation, Impact of the course on Societal Problems/ Sustainable Solutions/ National Economy, Career Perspective, Innovations (Current), Research status/trends. Principles of Combinational Logic :Introduction, Review of Boolean algebra and basic gates, Definition of combinational logic, Canonical forms, Generation of switching equations from truth table, Karnaugh maps - 3, 4 variables, Map entered variables, Incompletely specified functions, Simplifying max term equations, Quine - McCluskey minimization technique. Design with Basic gates, NAND gates and NOP gates.					
			8 hours)		
N	1odule – 2				
Introduction to combinational circuits, General approach, Decoders- NAND gate implementation, types, using decoders as Boolean function generators, BCD decoders, encoders. Parallel Adders (Carry Look Ahead Adder and Ripple carry adder), subtractors, Binary comparators, Multiplexers and DeMultiplexers.					
N	1odule – 3		, ,		
Flip Flops Introduction, Basic bistable elements, SR latch, applications, Gated SR latch, D, T, JK flip flops, Characteristics equations, Master/Slave JK flip-flop, Edge triggered flip flop, conversion of one flip flop to another. (8 hours)					
N	lodule – 4				
Registers : Introduction on registers, Shift registers: SISO, SIPO, PISO, PIPO and Universal Register. Applications of shift registers (serial adder, ring counter, Johnson counter). Counters: Introduction on counters, Up counter, down counter, up/down counter using flip flops, design of Mod N counter, Design of synchronous counters, Universal Counter					
N	Iodule – 5				
Sequential Circuit Design: Introduction, Mealy and Moore Models, St Sequential Circuit Analysis, Sequence de Design. Memories:	ate Machine Notation, State stector, Construction of sta	diagram, Synch te Diagrams, Co	ronous ounters		
Read only and Read/Write Memories, Prog SRAM, DRAM.	grammable ROM, EPROM, E	EPROM, Flash m	emory,		

Self- Study Topics:

- 1. Logic Gates, Universal gates and the truth tables.
- 2. Different Number systems

Summary: The student will be able to explore about Combinational & sequential circuits, design aspects, their applications and gain knowledge on Memories and their use.

(8 hours)

Course outcomes:

The students will be able to:

CO1: Analyze the Boolean equations and simplify the switching equations by applying Karnaugh Maps and Quine McClusky techniques.

CO-2: Design Adders, Subtractors, Multiplexer, Encoder, Decoder and Comparator as digital combinational control circuits.

CO-3: Design flip flops, counters, shift registers as sequential control circuits.

CO-4: Analyze and Develop Mealy/Moore Models and state diagrams for the given clocked sequential circuits.

CO-5: Design and develop finite state machines.

CO-6: Analyze the functioning of Read only and Read/Write Memories, Programmable ROM, EPROM and Flash memory.

Question paper pattern:

SEE will be conducted for 100 marks.

- The question paper will be set for 100 marks and marks scored will be proportionally scaled down to 50 marks
- The question paper will have ten questions. Each question is set for 20 marks.
- There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), should have a mix of topics under that module.
- The students have to answer 5 full questions, selecting one full question from each module.

CIE will be conducted for 100 marks.

- Three Unit Tests each of **20 Marks** (Duration 01 hour).
- Two assignments each of 10 Marks.
- Two alternate assessment tools (AATs) from the list shall be planned to attain the COs and POs for **20 Marks** (duration 01 hour).

The sum of three tests, two assignments, and AATs will be out of 100 marks and will be scaled down to 50 marks.

Textbooks:

- 1. M. Morris Mano, "Digital Logic and Computer Design", Pearson India Education services Pvt Ltd, 1st edition, March 2017.
- 2. Donald Givone, "Digital Principles and Design", Tata Mc Graw Hill, 7th edition, July 2017

- 1. Charles Roth Jr. Larry L. Kinney, Raghunandan G.H, "Fundamental of Logic Design", Cengage Learning ,1st edition, January 2019.
- 2. John Yarbrough, "Digital Logic Applications and Design", Cengage Learning, 1st Edition, 2006.

B.E. ELECTRICAL AND ELECTRONICS ENGINEERING Choice Based Credit System (CBCS) SEMESTER – IV					
Electrical Machines Laboratory-II(0:0:1) 1					
Course Code	21FEL48A	CIE Marks	50		
Teaching Hours/Week (L:T:P)	0:1:2	SEE Marks	50		
Total Number of Contact Hours	30	Exam Hours	3		
Course objectives:					
This course enables students to:					
1. To conduct Load, Swinburne's, I	Hopkinsons and field tests D	C Motors and to find	l the		
performance characteristics					
2. To conduct retardation test to fi	nd losses in DC machine				
3. To conduct speed control tests of	on DC motor	e to infinito hue to fi	nd		
4. To conduct a slip test and to con performance characteristics	nect synchronous generator	s to minine bus to n	inu		
List of Experiments					
	PART A				
1. Load test on a DC motor- deter	mination of speed-torque a	nd HP-efficiency			
characteristics.	· ·				
2. Swinburne's Test.					
3. Hopkinson's Test.					
4. Field's test on series motors.					
5. Retardation test- electrical bra	king method.				
6. Speed control of DC motor by a	armature voltage control and	d flux control.			
7. Slip test and determination of	regulation.				
8. Performance of synchronous g	renerator connected to infini	ite bus. under consta	ant		
nower and variable excitation	& vice - versa				
	PART B				
Open Ended Experiments:					
1. Load characteristics of a D.C. c	ompound generator - i) Sho	rt shunt-Cumulative	and		
Differential (ii) Long shunt-Cumulativ	ve and Differential.				
2. Load characteristics of a D.C. s	hunt generator				
Course outcomes:					
The students will be able to:					
CO1: Analyze the no load and load	characteristics of DC genera	tors			
CO2: Analyze the performance of D	C motors by direct and indi	rect methods			
CO3: Analyze and compare the reg	ulation of alternator by vari	ous methods			

B.E. ELECTRICAL AND ELECTRONICS ENGINEERING						
Che	Choice Based Credit System (CBCS) SEMESTER _ IV					
Power	Electronics Laboratory (0:0:1)1				
(Effectiv	re from the academic year 2021 -202	2)				
Course Code	21EEL48B	CIE Marks	50			
Teaching Hours/Week (L:T:P)	0:1:2	SEE Marks	50			
Total Number of Contact Hours	30	Exam Hours	3			
Course objectives:						
This course will enable students to:						
1. Conduct test to find the static ch	aracteristics of SCR, TRIAC, M	OSFET and IGBT				
2. Generate firing signal to trigger	the SCR by different methods					
3. Conduct test on single phase con	ntrolled rectifier and ac voltage	regulator				
4. Control the speed of various mo	otors					
	PART A					
1. Static Characteristics of SCR.						
2. Static Characteristics of MOSFE'	Г and IGBT					
3. Static Characteristics of TRIAC						
4. SCR turns on circuit using synch	ronized UJT relaxation oscillat	or				
5. SCR digital triggering circuit for	a single phase controlled recti	fier and ac voltage re	gulator			
6. Single phase controlled full wav	e rectifier with R load, R-L load	l with and without				
freewheeling diode						
7. AC voltage controller using TRL	AC and DIAC combination conn	ected to R and R-L lo	ads			
	PART B					
8. Speed control of DC motor using	single phase semi converter					
9. Speed control of stepper motor						
10. Speed control of universal moto	or using ac voltage regulator					
11. Speed control of a separately ex	cited D.C. Motor using an IGBT	/MOSFET chopper				
12. Single phase MOSFET/IGBT bas	ed PWM inverter	- • •				
Open ended Experiment						
1. Step up and Step down Chopper	with R load					
Course outcomes:						

The students will be able to:

CO1: Obtain static characteristics of semiconductor devices and find their performance

CO2: Trigger the SCR by different methods to be used in power converter

CO3: Verify the performance of different power electronic converters with R and RL loads

CO4: Control the speed of a dc motor, universal motor and stepper motors

B.E. ELECTRICAL AND ELECTRONICS ENGINEERING Choice Based Credit System (CBCS) SEMESTER – IV Digital System Design Laboratory (0:0:1) 1 (Effective from the academic year 2021-22)								
					Course Code	21EEL48C	CIE Marks	50
					Teaching Hours/Week (L:T:P)	0:1:2	SEE Marks	50
Total Number of Contact Hours	30	Exam Hours	3					
Course objectives:								
This course will enable students toDesign	n, realization and verifica	ition of						
1. Demorgan [*] s Theorem, SOP, POS forms								
2. Full/Parallel Adders, Subtractors and Magnitude Comparator								
A Demultiplexers and Decoders								
5. Flin-Flons. Shift registers and Counters.								
List of Experiments								
1. Simplification, realisation of Boolea	n expressions using logic	gates/universal gate	es					
2. Realisation of half/full adder and half/full Subtractors using logic gates								
3. i. Realisation of parallel adder/Subtractors using 7483 IC								
ii. BCD to excess-3 code conversion and vice versa								
4. Realisation of binary to gray code conversion and vice versa								
5. MUS/DEMUX – use of 74153, 74139 for arithmetic circuits and code converter								
6. Realisation of one/two bit comparator and study of 7485 magnitude comparator.								
7. Use of i) Decoder IC to drive LED display and b) Priority encoder								
8. Truth table verification of flip-flops of i. JK master slave ii. T type and iii. D type								
9. Realization of 3 bit counters as a sequential circuit and MOD-N counter design (IC 7476.								
IC7490. IC 74192 and IC 74193).								
10 Shift left shift right SIPO SISO PISO and PIPO operations using 74595								
Onen Ended Experiments								
1. Wiring and testing Ring counter/Iol	hnson Counter							
2. Writing and testing of Sequence Generator.								
3. Simulate Full Adder using any simu	lation tool							
4. Simulate Mod-8 Synchronous IIP/D	OWN Counter using Simu	lation tool						
	e dounter using billu							
Course outcomes: The students will be able to:								
		_						
CO1:Design the truth table of various expre	essions and combinationa	l circuits using logic	gates.					

CO2: Design, test and evaluate various combinational circuits such as adders, subtractors, comparators, multiplexers and demultiplexers CO3:Analyze and design flips-flops, counters and shift registers

B.E. ELECTRICAL AND ELECTRONICS ENGINEERING Choice Based Credit System (CBCS) SEMESTER – IV					
Diploma Mathematics- II (0:0:0) NIL					
COMMON TO ALL BRANCHES					
(Effective from	m the academic year	<u>2021-22)</u>	100		
Tooching Hours (Wook (L.T.D)	21DIP41A 2.0.0		100		
Total Number of Contact Hours	3:0:0	SEE Marks	-		
Course Objectives:	3	Exam nours	3		
 This course will enable students to: 1. To provide an insight into linear & higher order ODE's and elementary probability theory. 2. To familiarize the important tools of Laplace transformations required to analyse the engineering problems. 					
Module – I					
 Introduction: Understanding the importance of Vector Differentiation, Differential equations, Laplace Transforms and Probability in the field of Science, Engineering, Business and Research. Differential equations–I: Introduction-solutions of first order and first-degree differential equations: exact, Equations reducible to exact, linear differential equations and Bernoulli's equation. (6 hours) 					
Module – II					
Differential equations–II: Linear differential equations of second and higher order equations with constant coefficients. Homogeneous/non-homogeneous equations. Inverse differential operators. [Particular Integral restricted to $R(x) = e^{ax}$, sin ax, cos ax, polynomial for f (D)y = $R(x)$]. (6 hours)					
Module – III					
Probability: Introduction to Probability, Sample space and events. Axioms of probability. Addition & multiplication theorems. Conditional probability, Bayes' theorem, problems. (6 hours)					
Module – IV					
Laplace Transforms: Definition and Laplace transforms of elementary functions, LaplaceTransforms of e^{at} f(t), $t^n f(t)$, n is a positive integer & (f(t))/t (without proof), Periodicfunction (statement only) and Unit-step function – problems.(6 hours)					
MOQUIE – V					
Convolution theorem (No Proof), Evaluation of Inverse Laplace Transform using Convolution theorem. Solution of linear differential equations using Laplace transforms technique.					
Recap/Summary of the course.			(6		
Course outcomes: The students will be able to: CO1: Solve first and higher order ordinary differential equations. CO2: Use Laplace transform and inverse Laplace transform in solving differential equation. CO3: Apply elementary probability theory for related problems.					

Question paper pattern:

CIE will be conducted for 100 marks.

- Three Unit Tests each of **20 Marks** (Duration 01 hour).
- Two assignments each of 10 Marks.
- Course Seminar suitably planned to attain the COs and POs for 20 Marks (duration 01 hours).
- The sum of three tests, two assignments, and a seminar will be out of 100 marks. The student shall secure a minimum of 40% of marks of the course to qualify and become eligible for the award of a degree.

Textbooks:

- **1.** B. S. Grewal, Higher Engineering Mathematics, 43rd Edition, Khanna Publishers, 2015.
- **2.** E. Kreyszig, Advanced Engineering Mathematics, 10th Edition, John Wiley & Sons, 2015.
- **3.** B. V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill, 2010.

- **1.** N. P. Bali, Manish Goyal, "A Text Book of Engineering Mathematics", Laxmi Publishers, 2014.
- **2.** C. Pandurangappa, Advanced Mathematics II (Lateral entry bridge course text book)", 3rd Edition. Sanguine Publishers, 2015.
- **3.** S. Pal, S. C. Bhunia, Engineering Mathematics, 3rd Edition, Oxford University Press, 2011.
- **4.** H. K. Dass, Er. Rajnish Verma, Higher Engineering Mathematics, S. Chand Private Ltd, 2014.