

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi) Avalahalli, Yelahanka, Bengaluru 560064

Bachelor of Engineering

Department of Electronics and Telecommunication Engineering

V and VI Semester Scheme and Syllabus

2021 Scheme - Autonomous

Approved in the BoS meeting held on 27.05.2023

Vision of the Department

To emerge as a premier department developing high quality Electronics and Telecommunication Engineering Professionals with ethics and eco-friendliness for betterment of the society.

Mission of the Department

Impart quality education in Electronics and Telecommunication Engineering by facilitating:

- M1: Conducive learning environment and research activities
- M2: Good communication skills, leadership qualities and ethics
- M3: Strong Industry-Institute interaction

Program Educational Objectives (PEOs)

After three to four years of graduation our graduates will:

- PEO 1: Excel as Professionals in Electronics, Telecommunication and IT related fields.
- **PEO 2:** Engage in life-long learning.

PEO 3: Maintain ethical norms, exhibit good communication skills and leadership qualities.

Program Specific Outcomes (PSOs)

- PSO 1: Analyze and design communication systems
- PSO 2: Analyze and implement signal processing applications
- PSO 3: Design and implement embedded systems

0

BMS INSTITUTE OF TECHNOLOGY & MANAGEMENT

(An Autonomous Institution affiliated to VTU, Belagavi) Yelahanka, Bengaluru-560064

Date: 14.06.2023

CIE and SEE Pattern for 2021 Scheme (Applicable from the AY 2021-22 onwards)

Important Note:

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Examinations (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for SEE minimum passing mark is 35% of the maximum marks (18 marks out of 50). The student is declared as a pass in the course if he / she secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

4 CREDIT and 3 CREDIT COURSES

I. CONTINUOUS INTERNAL EVALUATION (CIE): 50 MARKS

- Internal Assessment (IA) Tests: 3 IAs to be conducted for 40 Marks (90 minutes each).
 Total of 3 tests will be 120 and the same can be scale down to 60 marks.
- Alternate Assignment Tool (AAT): 2 AATs each of 10 marks, total 20 marks.
- Assignments: 2 assignments of each 10 marks, total 20 marks.
- CIE marks = 60 + 20 + 20 = 100 and same can be scale down to 50 marks.
- Student has to score minimum of 20 marks (40%).

II. SEMESTER END EXAMINATIONS (SEE): 50 MARKS

SEE is conducted for 100 Marks (3 hours).

Question Paper Pattern:

Part - A: Comprises 20 objective type questions carrying 1 Mark each with a total 20 Marks. Part - B: There will be **5 modules**. Each module will have **TWO questions carrying 16 marks** each. There will be a maximum of three sub section for each question. Student has to answer any ONE full question from each module.

SEE Marks = 20 + 80 = 100 marks and can be scale down to 50 marks.

Page 1 of 3

<u>2 CREDIT COURSES</u>

I. CONTINUOUS INTERNAL EVALUATION (CIE): 50 MARKS

- Internal Assessment (IA) Tests: 3 IAs of MCQ type to be conducted for 40 Marks (60 minutes each). Total of 3 tests will be 120 and the same can be scale down to **60 marks**.
- Alternate Assignment Tool (AAT): 2 AATs each of 10 marks, total 20 marks.
- Assignments: 2 assignments of each 10marks, total 20 marks.
- CIE marks = 60 + 20 + 20 = 100 and same can be scale down to **50 marks**.
- Student has to score minimum of 20 marks (40%).

II. SEMESTER END EXAMINATIONS (SEE): 50 MARKS

SEE is conducted for 100 Marks (2 hours).

Question Paper Pattern:

- The pattern of the question paper is MCQ.
- SEE question paper will be set for 100 questions each of 01 marks. The same is scale down to 50 marks.

<u>1 CREDIT COURSES</u>

I. CONTINUOUS INTERNAL EVALUATION (CIE): 50 MARKS

- Internal Assessment (IA) Tests: 3 IAs of MCQ type to be conducted for 40 Marks (60 minutes each). Total of 3 tests will be 120 and the same can be scale down to **60 marks**.
- Alternate Assignment Tool (AAT): 2 AATs each of 10 marks, total 20 marks.
- Assignments: 2 assignments of each 10marks, total 20 marks.
- CIE marks = 60 + 20 + 20 = 100 and same can be scale down to **50 marks**.
- Student has to score minimum of 20 marks (40%).

II. SEMESTER END EXAMINATIONS (SEE): 50 MARKS

SEE is conducted for 50 Marks (1 hours).

Question Paper Pattern:

- The pattern of the question paper is MCQ.
- SEE question paper will be set for 50 questions each of 01marks. The same is scale down to 50 marks.

Page 2 of 3

Page 2 of \$

<u>1 CREDIT LABORATORY COURSES</u>

I. CONTINUOUS INTERNAL EVALUATION (CIE): 50 MARKS

- Cumulative Assessment (CA) of each experiment is 20 Marks (Conduction 10 marks + Records 5 marks + Viva 5marks). The average of all the experiments to be taken for 20 marks.
- Open Ended Experiments (OE) 10 marks.
- 2 IAs Test to be conducted for 100 marks. General rubrics suggested for SEE are: Writeup 20 marks, Conduction of the experiments, calculations, graphs, results, etc.,: 60 marks and Viva: 20 marks. The average of 2 IA marks is scale down to 20 marks.
- CIE marks =20 (CA) +10 (OE) + 20 (IA test) = 50 marks.
- Student has to score minimum of 20 marks (40%).

II. SEMESTER END EXAMINATIONS (SEE): 50 MARKS

SEE is conducted for 100 Marks and scale down to 50 Marks.

Examinations to be conducted jointly by Two examiners. All the experiments are to be included for practical examination. General rubrics suggested for SEE are: Writeup 20 marks, Conduction of the experiments, calculations, graphs, results, etc.,: 60 marks and Viva: 20 marks.

COE 16 06 2023

MJah 16/06/2023

Principal

Page 3 of 3

Scheme of V Semester

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(Autonomous Institute affiliated to VTU)

Scheme of Teaching and Examination: Effective from AY 2021–22 Choice Based Credit System (CBCS)

UG PROGRAM: ELECTRONICS & TELECOMMUNICATION ENGINEERING (ETE)						Semester: V							
S 1	Course	Course		Teaching Teaching Hours /Weel				/Week	redits	Examination			
No	Category	Code	Course Title	Dept.	pt.			Duration		CIE Marks	SEE	Total	
					L	Т	Р	PW	Ü	Hrs.		Marks	Marks
1	HS	21HSS51	Management and Entrepreneurship	ETE	3	0	0	0	3	3	50	50	100
2	AEC	21AEC52	Cyber and Intellectual Property Law	ETE	0	2	0	0	1	1	50	50	100
3	INT	21INT53	Innovation / Entrepreneurship / Societal Internship	ETE	0	0	0	6	3	-	100	-	100
4	PE	21ET54X	Professional Elective - I	ETE	3	0	0	0	3	3	50	50	100
5	PC	21EC55	Signal Processing	ETE	2	2	0	0	3	3	50	50	100
6	PC	21EC56	Advanced Electromagnetics	ETE	3	0	0	0	3	3	50	50	100
7	PC	21ET57	VLSI & Embedded Controller	ETE	3	2	0	0	4	3	50	50	100
8	PC	21ECL58A	Signal Processing Laboratory	ETE	0	0	2	0	1	3	50	50	100
9	PC	21ETL58B	VLSI & Embedded Controller Laboratory	ETE	0	0	2	0	1	3	50	50	100
	TOTAL 14 6 4 6 22 500 400 900												

Professional Elective - Group I				
Course Code	Course Title			
21ET541	Automotive Electronics			
21ET542	Information Theory and Coding			
21ET543	Electronic Product development			
21ET544	Optical Networks			
21ET545	OOPs Using C++			

Syllabus of V Semester

B.E. ELECTRONICS AND TELECOMMUNICATION ENGINEERING Choice Based Credit System (CBCS)						
Management and Entrepreneurship (3:0:0) 3 (Effective from the academic year 2021-22)						
Course Code	21HSS51	CIE Marks	50			
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	50			
Total Number of Contact Hours	40	Exam Hours	3			
Total Number of Contact Hours 40 Exam Hours 3 Course objectives: This course will enable students to: 1. Define the strategic, tactical, and operational roles and functions of management. 2. Use critical thinking to formulate and execute managerial entrepreneurial strategies, plans, and procedures. 3. 3. Understand the Ideation Process, creation of Business Model, Feasibility Study andsources of funding Module - 1 Management: Significance and Scope of Management, Importance of the management and entrepreneurship in Economic growth of Nation, Impact of the entrepreneurship on Societal Problems for Sustainable Solutions. Management in the perspective of National Economy, Career, Innovations and trends. Definition, Management functions, Levels of management, Roles of manager, Managerial skills, Management & Administration. Planning: Importance Types Steps and Limitations of Planning: Decision Making types						
			(8 Hours)			
Module – 2						
Organizing and Staffing: Organization-Meaning, Characteristics, Process of Organizing, Principles of Organizing, Span of Management, Departmentalization. Committees: Meaning, Types of Committees; Centralization Vs Decentralization of Authority,Responsibility. Staffing: Importance, Recruitment and Selection Process. Directing and Controlling: Meaning and Requirements of Effective Direction. Motivation: Nature of Motivation, Motivation Theories (Maslow's Need-Hierarchy Theory and Herzberg's Two Factor Theory). Communication: Meaning, Importance and Purposes of Communication. Leadership: Meaning, Characteristics, Behavioral Approach of Leadership. Coordination: Meaning, Types, Techniques of Coordination; Controlling: Meaning, Need for Control System, Benefits of Control, Essentials of Effective Control System, and Steps in Control Process. (8 Hours)						
Module – 3						
Entrepreneurship: Definition of Entrepreneur, Importance of Entrepreneurship, concepts of Entrepreneurship, Characteristics of successful Entrepreneur, Classification of Entrepreneurs, Myths of Entrepreneurship, Entrepreneurial Development models, Entrepreneurial development cycle, Problems faced by Entrepreneurs and capacity building for Entrepreneurship. Theories of Entrepreneurship. (8 Hours)						
	mount T					

Entrepreneurial Project Development: Idea Generation and Feasibility Analysis- Idea Generation; Creativity and Innovation; Identification of Business Opportunities; Market Entry Strategies; Marketing Feasibility; Financial Feasibilities; Political Feasibilities; Economic Feasibility; Social and Legal Feasibilities; Technical Feasibilities; Managerial Feasibility, Location and Other Utilities Feasibilities.

(Case study/Activity to demonstrate entrepreneurial abilities)

(8 Hours)

Module – 5
Social Responsibilities of Business: Meaning of social responsibility, social
responsibilities of business towards different groups, social audit, business ethics and
corporate governance.
Self-study topics:
1. Sources of funding, Working capital management and Taxation benefits.
Market evaluations and turnaround strategies.
3. Policies governing SME's
4. Perform market survey on sectors promoted by the government and submit the report
forthe same.
Summary: The student will explore entrepreneurial opportunities and gather all relevant
data for starting a venture.
(8 Hours)
Course outcomes:
The students will be able to:
CO1: Comprehend the fundamental concepts of Management and Entrepreneurship and opportunities in order to setup a business
CO2: Categorise the functions of Managers. Entrepreneurs and their social responsibilities
CO3: Analyse the business environment components in developing a business plan.
CO4: Individually and in teams identify, conceptualize, and develop solutions for successful
entrepreneurial management.
Toythooks
1 D.C. Trinathi, D.N. Doddy, "Drinciples of Management" (the Edition McCrow
HillEducation, 2017.
2. Dr. Vasant Desai. "Dynamics of Entrepreneurial Development and Management".
6 th Edition,Himalayan Publishing House, 2019.
References:

- 1. Poornima. M. Charantimath., "Entrepreneurship Development Small BusinessEnterprises", Pearson Education, 2008.
- 2. Robert. D. Hisrich., Mathew. J., Manimala., Michael. P. Peters., Dean. A., Shepherd, "Entrepreneurship", 8th Edition, Tata McGraw Hill Publishing Co. ltd, 2012.
- Harold Koontz, Heinz Weihrich., "Essentials of Management: An International, Innovation and Leadership perspective", 10th Edition, McGraw Hill Education, 2016.

B.E. ELECTRONICS	AND TELECOMMUNICATION	ENGINEERING				
Choice Based Credit System (CBCS)						
Jemester - V Cybor and Intallactual Dranarty Law (0.1.0)1						
Cyber and Intellectual Property Law (0:1:0)1						
(Effective from the academic year 2021-22)						
Course Code	21AEC52	CIE Marks	50			
Teaching Hours/Week (L:T:P)	0:2:0	SEE Marks	50			
Total Number of Contact Hours	15	Exam Hours	1			
Course Objectives:			•			
This course will enable students	to:					
1. Understand the concept of IP	, copyright, patent and its prot	ection.				
2. Explain the scope of tradema	rks, industrial and IC layout de	sign.				
3. Enhance their knowledge on	IP management and related ag	reements.				
4. Understand overview of Cybe	er law and cyber policies.					
5. Identify different types of cyb	percrime and security measure	S.				
	Module – 1					
Introduction to IP: Various form	ns of IP, Intellectual propert	y verses physic	cal property,			
importance of intellectual property	7.					
Copyright: Different classes of c	opyright work, ownership of	copyright, term	n of copyright,			
Datont: Fundamentals of patent, co	andition for grant of nations in	ontions those of	o not			
natentable right of natentee trans	sfer of natent right Infringem	ent of natent rig	t challenges			
in patents. Case study on prior art s	search and patent drafting.	ent of patent fig	ine, enumeriges			
(3 Hours)						
	Module – 2					
Trademarks: Introduction to	trademark, developing trade	mark, term of	trademark,			
collective marks, certification trade	emarks, Infringement of trader	nark. Circuita Lavout	The Comi			
Conductor Integrated Circuits Lavo	ut Design (SICLD) Act 2000	Circuits Layout	, The Senn-			
Industrial Design: Design registra	tion. Industrial design act 200	0.				
Case study on infringement of Indu	istrial Design					
			(3 Hours)			
	Module – 3					
Creating IP : Need for creating IP, I	Process of development of IP a	nd knowledge.				
TRIPS (Trade-Related aspects of	IPR): Need and objectives, Ag	greement on tri	p, scheme of			
agreements. WIPO: Objectives, functions, memberships						
Treaties: Patent cooperation Treaty(PCT): filing patent under PCT, Different stages and						
procedure in PCT filing. Paris Conv	vention Treaty: filing patent u	nder Paris conve	ention treaty,			
Different procedure stages		a af ID as a				
IF Management: Defining IP man	agement, need and importance	e of ir managem	ent, lisation of ID			
notecting IP Case studies on PCT	filing	uno, commercia	iisauuii ui ir,			
			(3 Hours)			
			(5 nouis)			

Module – 4
Cyber Law: introduction to Indian cyber law, need for cyber law, jurisprudence of cyber law,
importance of cyber law.
IT Act: Objective and scope of The Indian Information Technology Act 2000.
Cyber Crimes: What constitute cyber crime, Important cybercrimes.
Cyber policies: Need for an information security policy, information security standard-ISO,
introduction to various security policies. Case study on cyber crime.
(3 Hours)
Module – 5
Phishing ; Sspear phishing, protecting from phishing attack, cyber stalking, how to prevent
cyber stalking.
Hacking: types, Protection of computers from intrusion and types, different types of hackers
and their operation.
Data theft : IT act related to data theft, Spam E-mail, IT act related to spam mail, Software
Flactronic and digital signature: Pole of electronic signature, types of electronic signature
guidelines for electronic signature. Creation of digital signature, digital signature in India
(3 Hours)
Course Outcomes:
The students will be able to:
CO1: Describe the concept of copyright and patent and its protection.
CO2: Explain the scope of trademarks, industrial and IC layout design.
CO3 Describe Intellectual property management and related agreements.
CO4: Understand overview of Cyber law and cyber policies.
CO5: Discuss different types of cybercrime and security measures.
Text Books
1 V Appukutty, Cyber Crime & Law, Coral Publishers, 2022
2 Surya Prakash Tripati, Ritendra Goel, Praveen Kumar Shukla, Introduction to information
Security and Cyber Laws, Dream Tech Press,2021
3 Neeraj Pandey, Khushdeep Dharni, Intellectual Property Rights, PHI Learning, 2014
References
1 Prabhuddha Ganguli, Intellectual Property Rights, Tata Mc-Graw –Hill, 2017
2 S R Myneni, Patent Right Creation and Registration, Asia Law House, 2017
3 Marjie T. Britz, Computer Forensics and Cyber Crime: An Introduction, Pearson, 3rd
Edition, 2004.
4 Bill Nelson, Amelia Phillips, Christopher Steuart, Guide to Computer Forensics and
Investigations, Cengage Learning, 4th Edition, 2010.

B.E ELECTRONICS AND TELECOMMUNICATION ENGINEERING CHOICE BASED CREDIT SYSTEM (CBCS)						
	SEMESTER - V	-				
Innovation / Entrepreneurship/ Societal Internship (0:0:0:3) 3						
(Common to all Branches)						
(Effective f	rom the academic year 202	21-22)				
Course Code 21INT53 CIE Marks 100						
Teaching Hours/Week (L:T:P:PW) 0:0:0:6 SEE Marks						
Total Number of Contact Hours4 weeksExam Hours						

Schedule:

Scheduled during the intervening period of IV and V semester

During the intervening period of IV and V semesters, students shall be ready for industrial experience. Therefore, they shall choose to undergo Internship involving Innovation / Entrepreneurship/Societal related activities. Students may choose to work on innovation or entrepreneurial activities or both resulting in start-up or undergo internship with industry/ NGO's/ Government organizations/ Micro/ Small/ Medium enterprises to make themselves ready for the industry. In case students want to undergo internship at his/her family business, he /she shall will be permitted provided, a declaration by a parent is submitted directly to the Principal of the institution.

Innovation:

Innovation refers to a new or improved product or process or a combination thereof that differs marginally or significantly from the unit's previous product. An innovation center is a place where students are encouraged to implement the innovative ideas formed through imagination, brainstorming sessions, design thinking and associated activities to bring them to reality. It is a place, where creative minds are shaped.

Entrepreneurship:

Entrepreneurship refers to setting up a new business or businesses, taking on financial risks in the hope of profit. It involves investment to undertake production along with arranging inputs like land, labour, material and capital, introducing new techniques and products, identifying new sources for the enterprise, etc.

Incubation Center:

An organized unit designed for innovation as well as to accelerate the growth and success of new entrepreneurial companies through mentorship and an array of business support resources and services that could include physical space, capital, coaching, common services, and networking connections.

Startup:

An entity that develops a business model based on either product innovation or service innovation and makes it scalable, replicable and self-reliant.

Societal (Social) related activities:

Short term internship at villages, slums or urban areas can be under social internship. The internship will be more fruitful, if students work in teams. The teams can select one or more fields to do their best in the field of agriculture, watershed management, wastelands development, non-conventional energy, low cost housing, sanitation, nutrition and personal hygiene, schemes for skill development, income generation, blood bank, government scheme such as Swachch Bharat, Accessible India, Digital India, Beti Bachao and Beti Padhao, Environment and Energy Conservation and Education, legal aid, consumer protection and allied field including Indian Red Cross Society, National Cadet Corps, Bharat Scouts and Guides.

Places for Innovation/Entrepreneurial Activities:

Students shall carryout Innovation or Entrepreneurial activities or both at the Incubation Center and

Entrepreneurship Cell of the parent institution or elsewhere such as ATAL Incubation Centers [A flagship of Atal Innovation Mission (AIM), NITI Aayog for promoting the culture of innovation and entrepreneurship in India], institutes of national importance, public sector units, IT companies, government organizations, and non-governmental organizations, industries including MSME, etc. Institutes, should deter students to opt for internships at places established for commercial benefits.

Course Outcomes: Students will be able to

- 1. Acquire academic/ career/ personal overall skill/ knowledge development.
- 2. Perceive ample opportunities for professional growth and achievement with relevance to society and environment.
- 3. Expose to real job world environment and gain practical knowledge with experience.
- 4. Build leadership qualities, teamwork, collaborations, cooperation, and facility in using virtual workspace.
- 5. Intensify creativity, artistry, curiosity, imagination, innovation, incubation, entrepreneurial skills and personal expression.
- 6. Write report on the work/ project carried out with presentation.

Indicator	Poor	Average	Good	Excellent
Acquired	Not gained any	Partial	Average	Complete skill/
skills or	skill /	skill/Knowledge	skill/knowledge	knowledge gained.
knowledge	knowledge or	gained. Only	gained. Lack of	All Skills Acquired.
(10 Marks)	Attended a few	Block Diagram/	Technical/	8-10 Marks
(CO1)	sessions.	Notes/Description	Knowledge.	
	0-1 Marks	2-4 Marks	5-7 Marks	
Presentation (10 Marks) (CO5)	Absence for presentation or Presented after the due date. 0-1 marks	Information is lacking/unclear & communicated in such a way that the audience can not understand the purpose of the evidence of work and internship experiences. 2-4 Marks	Information is not presented in a clear manner and many details are missing related to the evidence work and internship experiences. 5-7 Marks	Information is presented in such a way that the audience can understand the purpose of the evidence of work and internship experiences. 8-10 Marks
Weekly report (10 Marks) (CO6)	Weekly report not submitted or Few days report was submitted. 0-1 Marks	One Weekly report submitted. 2-4 Marks	Two weekly reports submitted. 5-7 Marks	All three weekly reports submitted 8-10 Marks

Rubrics for Internal Evaluation (Total Marks: 100)

Practical Knowledge (10 Marks) (CO3)	Not gained any practical knowledge or Able to define basic concepts. 0-1 Marks	Partial practical Knowledge gained. Less hands-on experience. 2-4 Marks	Average practical knowledge gained. Only few models are exhibited. 5-7 Marks	Complete practical knowledge gained. 8-10 Marks
Societal and environment al relevance (10 Marks) (CO2)	No relevance to society or environment (At-least one relevance) 0-1 Marks	Partial relevance to society or environment. 2-4 Marks	Average relevance to society or environment. 5-7 Marks	Directly Relevant to society or environment. 8-10 Marks
Viva (10 Marks) (CO4)	Does not know any information or Fair leadership quality/ teamwork/ cooperation. 0-1 Marks	Provides irrelevant information for all questions. Good leadership quality/ teamwork/ cooperation. 2-4 Marks	Provides incomplete information for all questions. Better leadership quality/ teamwork/ cooperation. 5-7 Marks	Provides complete information for all questions. Outstanding leadership quality/ teamwork/ cooperation. 8-10 Marks
Report (40 Marks) (CO6)	Does not submit the report. 0 Marks	Report submitted does not fulfill the prescribed format/submission after one weeks of the deadline. 1-24 Marks	Report submitted partially fulfills the prescribed format/ submission after one weeks of the deadline. 25-32 Marks	Report submitted fulfills the prescribed format / submission in par with the deadline. 33-40 Marks

CIE and SEE Details for Scheme 2021

Course	CIE (Minimu 40% of	um Passing Marks Max Marks)	s SEE (Minimum Passing Ma 35% of Max Marks)	
	Max Marks	Min Passing	Max Marks	Min Passing
		marks		marks
Innovation / Entrepreneurship/ Societal Internship	100	40	-	-

B.E ELECTRONICS AND TELECOMMUNICATION ENGINEERING CHOICE BASED CREDIT SYSTEM (CBCS) SEMESTER - V						
Automotive Electronics (3:0:0) 3						
(effective fr	om the academic year 2021-2	2)	[
Course Code	21ET541	CIE Marks	50			
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	50			
Total Number of Lecture Hours	Total Number of Lecture Hours40Exam Hours3					
Course objectives:						
This course will enable students to:						
1. Understand Role of automotiv	e Electronics					
2. Learn different Automotive co	ncepts to design control syste	ms, Sensors and	1			
Communication protocols etc.						
3. Demonstrate the role of different	ent sensors and actuators wor	king in auto mo	tives.			
Introduction: Automotive electronic society and economic growth of courses	cs, its role in the automotive ntry.	industry and its	s impact on			
	Module – 1					
Automotive Electronics, Automobile Physical Configuration, Survey of Major Automotive Systems. The Basics of Electronic Engine Control : Motivation for Electronic Engine Control, Exhaust Emissions, Fuel Economy, Concept of an Electronic Engine control system, Definition of General terms, Definition of Engine performance terms, Engine mapping, Effect of Air/Fuel ratio, spark timing and EGR on performance, Control Strategy, Electronic Fuel control system, Analysis of intake manifold pressure, Electronic Ignition. (8 Hours)						
	Module – 2					
Automotive Control System applications of Sensors and Actuators: Typical Electronic Engine Control System, Variables to be measured, Automotive Sensors Airflow rate sensor, Strain Gauge MAP sensor, Engine Crankshaft Angular Position Sensor, Magnetic Reluctance Position Sensor, Hall effect Position Sensor, Shielded Field Sensor, Optical Crankshaft Position Sensor, Throttle Angle Sensor (TAS), Engine Coolant Temperature (ECT) Sensor, Exhaust Gas Oxygen (O2/EGO) Lambda Sensors, Piezoelectric Knock Sensor. Automotive Actuators: Solenoid, Fuel Injector, EGR Actuator, Ignition System.						
Module - 3						
Module – 3 Digital Engine Control Systems – Digital Engine control features, Control modes for fuel Control (Seven Modes), EGR Control, Electronic Ignition Control - Closed loop Ignition timing, Spark Advance Correction Scheme, Integrated Engine Control System - Secondary Air Management, Evaporative Emissions Canister Purge, Automatic System Adjustment, System Diagnostics).						

Module – 4

Automotive Networking :

Bus Systems, Classification, Applications in the vehicle, Coupling of networks, Examples of networked vehicles, Buses, CAN Bus, LIN Bus, MOST Bus, Bluetooth, FlexRay, Diagnostic Interfaces.

Vehicle Motion Control – Typical Cruise Control System, Digital Cruise Control System, Digital Speed Sensor, Throttle Actuator, Digital Cruise Control configuration, Cruise, Control Electronics (Digital only), Antilock Brake System (ABS)

(8 Hours)

Module – 5

Future Automotive Electronic Systems:

Alternative Fuel Engines, Electric and Hybrid vehicles, Fuel cell powered cars, Collision Avoidance Radar warning Systems, Low tire pressure warning system, Heads Up display, Speech Synthesis, Navigation – Navigation Sensors - Radio Navigation, Signpost navigation, dead reckoning navigation, Voice Recognition Cell Phone dialing, Advanced Cruise Control, Stability Augmentation, Automatic driving Control.

Summary of the Course :

This course basically deals with fundamentals of automotive electronics covering from Electronic engine Control unit to role of sensors and actuators in making user life comfortable and safer. The role of communication protocols is also discussed in details along with expected automotive electronic systems emphasizing features like collision avoidance radar warnings, navigation sensors to advanced cruise control systems.

(8 Hours)

Note: Students are required to evaluate the performance of performance of Sensors and actuators required to function precisely in Automotive environment by using Matlab

Course outcomes: The students will be able to:

- CO1: Understand overview of automotive components, subsystems, and basics of Electronic Engine Control in today's automotive industry.
- CO2: **Use** available automotive sensors and actuators while interfacing with microcontrollers microprocessors during automotive system design.
- CO3: **Analyse** the role of different sensors, actuators and network protocols used in various modules in automotive systems
- CO4: **Design** electronics that attribute the reliability, safety, and smartness to the automobiles, providing add-on comforts
- CO5: **Evaluate** the performance of automotive systems using tools.

Question paper pattern:

- SEE will be conducted for 100 marks.
- Part A: First question with 20 MCQs carrying 1 mark each.
- Part B: Each full question is for 16 marks. (Answer five full questions out of 10 question with intra modular choice).
 - a. There will be a maximum of three sub-questions from each module.
 - b. There will be a choice from two full questions from each module.

Textbooks

1. William B. Ribbens, Understanding Automotive Electronics, 6th Edition., Elsevier Publishing

References

1. Bosch Gmbh (Ed.) , Bosch Automotive Electrics and Automotive Electronics Systems and components, Networking and Hybrid Drive, 5th Edition, John Wiley& Sons Inc, 2007

B.E IN ELECTRONICS AND TELECOMMUNICATION ENGINEERING							
Choic	e Based Credit System (CBCS)						
SEMESTER - V							
INFORMATION THEORY AND CODING (3:0:0) 3							
(Effective from the academic year 2021-22)							
Course Code	21ET542	CIE Marks	50				
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	50				
Total Number of Lecture Hours	40	Exam Hours	03				
Course objectives:							
This course will enable students to:							
1. Understand the concept of Ent	ropy, Rate of information and	order of the sour	rce with				
reference to dependent and inde	ependent source.						
2. Study various source encoding a	algorithms.						
3. Model discrete & continuous con	mmunication channels.						
4. Study various error control codi	ing algorithm0s.						
Introduction							
Information theory Coding Signific	cance of information and codir	ng in the current s	cenario				
Industrial applications research in t	the field of information theory	Impact of the info	rmation				
theory on societal problems and sus	tainable solutions	impact of the mo	mation				
theory on societal problems and sus	Module – 1						
Information Theory:	moune 1						
Introduction, Measure of informatio	n. Information content of mes	sage, Average Info	rmation				
content of symbols in Long Indepen	dent sequences, Average Infor	mation content of	symbols				
in Long dependent sequences, Mark	ov Statistical Model of Informa	ation Sources, Entr	opy and				
Information rate of Markoff Sources							
	Madula 2		Hours)				
	Module – 2						
Source Coding:	e Vreft McMiller Inconstitute	onorte VMI Eng	oding of				
the Source Output Shannon's End	s, Krait McMillall Inequality pr	operty – KMI. Elic	ouilig of				
Huffman codes Arithmetic Coding	Loung Algorithm. Shannon T	and Encouning Al	301101111,				
interine couces, in terme couries.		C	7 Hours)				
	Module – 3						
Information Channels:							
Communication Channels. Channel	Models, Channel Matrix, Joint	probability Matrix	, Binary				
Symmetric Channel, System Entro	ppies, Mutual Information, C	hannel Capacity,	Channel				
Capacity of : Binary Symmetric Channel, Binary Erasure Channel, Muroga,s Theorem.							
(7 Hours)							
Frror Control Coding.	Module - 4						
Introduction, Examples of Error co	ontrol coding, methods of Co	ntrolling Errors, 7	vpes of				
Errors, types of Codes. Linear Block	Codes: matrix description of	Linear Block Code	es, Error				
Detection and Error Correction Car	pabilities of Linear Block Code	es, Single Error Co	rrecting				
hamming Codes, Table lookup Deco	ding using Standard Array.	-	C				
Binary Cyclic Codes: Algebraic Str	ucture of Cyclic Codes, Encodi	ng using an (n-k)	Bit Shift				
register, Syndrome Calculation, Erro	or Detection.						

(8 Hours)

Module – 5

Some Important Cyclic Codes: Golay Codes, BCH Codes.

Convolution Codes: Convolution Encoder, Time domain approach, Transform domain approach, Code Tree, Trellis and State Diagram, The Viterbi Algorithm (Text 2: 7.1 – 7.3, 7.6.3).

Summary of the syllabus: The student will be able to explore the concepts of information theory which help to detect and correct errors and also design different codes considering efficiency.

(9 Hours)

Course outcomes: The students will be able to:

- CO1: Understand the measures of information, information sources, source encoding algorithms, communication channels and channel encoding techniques.
- CO2: **Apply** the knowledge of information coding techniques/algorithms to solve problems related to entropy and information content of discrete sources.
- CO3: **Analyse** different techniques/algorithms used for encoding and decoding of messages.
- CO4: **Interpret** the given case study situation related to applications of information theory & coding.
- CO5: Perform in a **group** to make effective **presentation** on the topics related to applications of error control coding.

Text Books:

- 1. Digital and analog communication systems, K. Sam Shanmugam, John Wiley India Pvt. Ltd, 1996.
- 2. Information Theory and Coding, Muralidhar Kulkarni, K.S. Shivaprakasha, Wiley India Pvt. Ltd, 1st Edition 2015.

References:

- 1. Digital Communication, Simon Haykin, John Wiley India Pvt. Ltd, Reprint 2009.
- 2. Digital Communications Fundamentals and Applications, Bernard Sklar, Pearson Education, 2nd Edition, 2016, ISBN: 9780134724058.

B.E ELECTRONICS A	ND TELECOMMUNICATION	N ENGINEERING	T
Cho	ice Based Credit System (CBCS)		
Electronic	SEMESTER - V Droduct Dovelonment (2)).0) 2	
(Effective f	rom the academic year 202	1-22)	
Course Code	21ET543	CIE Marks	50
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	50
Total Number of Contact Hours	40	Exam Hours	03
Course Objectives:			
This course will enable students to	:		
1. Understand various stages of h	ardware, Software and PCB	design.	
2. Importance of product test and	l test specifications.	-	
3. Special design considerations	and importance of documen	tation	
	Module – 1		2.2.2
Power Supply Design: Introduction,	Overview of Switching pow	ver Supply, DC to	DC Converter,
Buck Converter, Boost Converter	and Buck- Boost Converter Half & Full bridge conver	, Fly-Dack Conve	vortors DWM
control techniques Study of PWM	control ICs Design of base d	rive	
control teeninques, study of 1 wint	control 103, Design of buse u		(8 Hours)
	Module – 2		
Introduction to PCB Design u	sing OrCAD tool: Introd	uction to PCBs	and general
guidelines, PCB design rules for va	rious applications, Creation	of new project	in OrCAD tool,
drawing the circuit in the schemat	ic page using the componen	ts from the libra	ry, Simulation
of Circuit using P-spice Simulati	on for verification of resu	ilts, adding foo	tprints to the
components from the library.			(O Hours)
	Module - 3		
PCB Fabrication Process: PCB Ma	nufacturing Techniques. Fil	m Master Genera	ation methods.
Plating and Etching Techniques,	punching, drilling, milling,	Study Solderin	g Techniques,
Study of soldering defect and rec	tification, Based on theory	- Practical and	Assignment in
Design, Manufacturing and Assemb	ly.		
			(8 Hours)
	Module – 4	() PI	
Electromagnetic Interference: Over	view of Electromagnetic Int	erference and El	ectromagnetic
EMI Safety Cround Crounding Sch	Lonsiderations for EMC and	EMI, Reduction	taabniquaa far
Livit, Safety di bullu, di bullullig Sch	amos Difforences hotween	Analog and Digit	techniques for
	emes, Differences between	Analog and Digit	techniques for al Ground. (8 Hours)
	emes, Differences between A	Analog and Digit	techniques for al Ground. (8 Hours)
Shielding Techniques, Line Impo	emes, Differences between A Module – 5 edance Stabilization, Netwo	Analog and Digit	techniques for al Ground. (8 Hours) lucted Noise,
Shielding Techniques , Line Impe Common Mode Noises (CM), Differ	emes, Differences between A Module – 5 edance Stabilization, Netwo ential Mode Noises (DM), EN	Analog and Digit ork (LISN), Conc /I filter Design.	techniques for al Ground. (8 Hours) lucted Noise,
Shielding Techniques , Line Impe Common Mode Noises (CM), Differ	emes, Differences between A Module – 5 edance Stabilization, Netwo ential Mode Noises (DM), EM	Analog and Digita ork (LISN), Cond /I filter Design.	techniques for al Ground. (8 Hours) lucted Noise, (8 Hours)
Shielding Techniques, Line Impo Common Mode Noises (CM), Differ Course outcomes:	emes, Differences between A Module – 5 edance Stabilization, Netwo ential Mode Noises (DM), EN	Analog and Digit ork (LISN), Cond Al filter Design.	techniques for al Ground. (8 Hours) lucted Noise, (8 Hours)
Shielding Techniques, Line Impe Common Mode Noises (CM), Differ Course outcomes: The students will be able to:	emes, Differences between A Module – 5 edance Stabilization, Netwo ential Mode Noises (DM), EN	Analog and Digita ork (LISN), Conc AI filter Design.	techniques for al Ground. (8 Hours) lucted Noise, (8 Hours)
Shielding Techniques, Line Impe Common Mode Noises (CM), Differ Course outcomes: The students will be able to: CO1: Understand various stages of CO2: Apply the knowledge of elec	emes, Differences between A Module – 5 edance Stabilization, Netwo ential Mode Noises (DM), EN of hardware, software and P	Analog and Digita ork (LISN), Cond AI filter Design. CB design.	techniques for al Ground. (8 Hours) lucted Noise, (8 Hours)
Shielding Techniques, Line Impe Common Mode Noises (CM), Differe Course outcomes: The students will be able to: CO1: Understand various stages of CO2: Apply the knowledge of elect CO3: Analyse the different product	emes, Differences between A Module – 5 edance Stabilization, Netwo ential Mode Noises (DM), EN of hardware, software and P etronics in PCB designing et test and test specification	Analog and Digita ork (LISN), Conc AI filter Design. CB design.	techniques for al Ground. (8 Hours) lucted Noise, (8 Hours)
Shielding Techniques, Line Imper Common Mode Noises (CM), DifferCourse outcomes:The students will be able to:CO1:Understand various stages of CO2:CO2:Apply the knowledge of elect CO3:CO3:Analyse the different product CO4:Design various PCB for different	emes, Differences between A Module – 5 edance Stabilization, Netwo ential Mode Noises (DM), EN of hardware, software and P stronics in PCB designing ct test and test specification rent applications	Analog and Digita ork (LISN), Cond AI filter Design. CB design. s using simulatio	techniques for al Ground. (8 Hours) lucted Noise, (8 Hours)
Shielding Techniques, Line Imper Common Mode Noises (CM), DifferentCourse outcomes:The students will be able to:CO1:Understand various stages of CO2:CO2:Apply the knowledge of elect CO3:CO3:Analyse the different product CO4:Design various PCB for different CO5:Interpret the given case student	emes, Differences between A Module – 5 edance Stabilization, Netwo ential Mode Noises (DM), EM of hardware, software and P tronics in PCB designing ct test and test specification rent applications dy material related to design	Analog and Digita ork (LISN), Conc AI filter Design. CB design. s using simulation n and demonstra	techniques for al Ground. (8 Hours) lucted Noise, (8 Hours) m tools.

CO6: Perform in a group to design and execute an Electronic Product

Textbooks:

- 1. Electronic Instrument Design, Kim Fowler, Design Oxford university press.
- 2. Electronic Instrument Printed Circuit board design Techniques for EMC Compliance, Robert J. Herrick, Second edition, IEEE press.

References:

1. The Electronics Handbook C Whitaker, CRC press

B.E ELECTRONICS AND TELECOMMUNICATION ENGINEERING Choice Based Credit System (CBCS) SEMESTER - V Optical Networks (3:0:0) 3 (Effective from the academic year 2021-22) Course Code 21ET544 CIE Marks 50 Teaching Hours/Week(L:T:P) 3:0:0 SEE Marks 50 Total Number of Lecture Hours 40 Exam Hours 03 Course objectives: This course will enable students to: 1. Acquire the knowledge about the optical fiber materials and structure. 2. Understand the fundamental properties of optical fibers and networks. 3. Know about the characteristics of optical fibers and networks. 3. Know about the characteristics of optical fibers and designing the networks for certain applications. 4. Know about various configurations of optical fiber materials and their characteristics, optical fiber waveguides and their application in networks, fiber link design. Module - 1 Optical fiber structures and wave guides: Basic Optical laws and definitions, Optical fiber moterials, when heneworks fiber structure, Ray optic representation, Cutoff wavelength, V number and the number of modes, power flow in step index fiber, Single mode fibers, Mode field diameter, propagation modes in single mode fiber, graded index fiber structure. Fiber materials, Photonic crystal fibers, Fiber optic cables. Signal degradation in optical fibers: Attenuation, absorption, scattering losses, bending losses, Core and cladding losses. Signal dispersion in fibers: Dispersion, intra modal, intermodal, material, waveguide dispersion, polarization mode dispersion, international standards. Specially fibers. Fiber optic cables. Signal dispersion in fibers: Dispersion, intra modal, interime of and eage mitter LEDS, Light source materials, quantum efficiency and LED power, modulation of an LED. Laser diodes: modes and threshold conditions, fabry-Perot resonator cavity, laser diode reta eavardian attranks due threshold conditions, fabry-Perot resonator cavity, laser diode				
Optical Networks (3:0:0) 3 (Effective from the academic year 2021-22) Course Code 21ET544 CIE Marks 50 Teaching Hours/Week(L:T:P) 3:0:0 SEE Marks 50 Total Number of Lecture Hours 40 Exam Hours 03 Course objectives: This course will enable students to: 1. Acquire the knowledge about the optical fiber materials and structure. 03 2. Understand the fundamental properties of optical fibers and designing the networks for certain applications. 3. Know about the characteristics of optical fiber materials and their characteristics, optical fiber waveguides and their application in networks, fiber link design. Motule - 1 Optical fiber structures and wave guides: Basic Optical laws and definitions, Optical fiber modes and configurations, step index fiber structure, Ray optic representation, Cutoff wavelength, V number and the number of modes, power flow in step index fiber, Single mode fibers, Mode field diameter, propagation modes in single mode fiber, graded index fiber structure. Fiber materials, Photonic crystal fibers, Fiber optic cables. Signal degradation in optical fibers: Attenuation, absorption, scattering losses, bending losses, Core and cladding losses. Signal dispersion in fibers: Dispersion, intra modal, intermodal, material, waveguide dispersion, polarization mode dispersion, international standards. Specialty fibers. Optical sources and Detectors: Q9 Hours)	B.E ELECTRONICS AN Choic	D TELECOMMUNICATION e Based Credit System (CBCS) SEMESTER – V	ENGINEERING	
(Effective from the academic year 2021-22) Course Code 21ET544 CIE Marks 50 Teaching Hours/Week(L:T:P) 3:0:0 SEE Marks 50 Total Number of Lecture Hours 40 Exam Hours 03 Course objectives: This course will enable students to: 1. Acquire the knowledge about the optical fiber materials and structure. 2. Understand the fundamental properties of optical fibers and networks. S. Not works. Introduction: students will be familiar with optical fibers materials and their characteristics, optical fiber waveguides and their application in networks, fiber link design. Module - 1 Optical fiber structures and wave guides: Basic Optical laws and definitions, Optical fiber modes and configurations, step index fiber structure, Ray optic representation, Cutoff wavelength, V number and the number of modes, power flow in step index fiber, Single mode fibers, Mode field diameter, propagation modes in single mode fiber, graded index fiber structure. Fiber materials, Photonic crystal fibers, Fiber optic cables. Signal degradation in optical fibers: Attenuation, absorption, scattering losses, bending losses, Core and cladding losses. </td <td>Opt</td> <td>ical Networks (3:0:0) 3</td> <td></td> <td></td>	Opt	ical Networks (3:0:0) 3		
Course Code 21ET544 CIE Marks 50 Teaching Hours/Week(L:T:P) 3:0:0 SEE Marks 50 Total Number of Lecture Hours 40 Exam Hours 03 Course objectives: This course will enable students to: 1. Acquire the knowledge about the optical fiber materials and structure. 2. Understand the fundamental properties of optical fibers and networks. 3. Know about the characteristics of optical fibers and designing the networks for certain applications. 4. 4. Know about various configurations of optical networks. Introduction: students will be familiar with optical fiber materials and their characteristics, optical fiber waveguides and their application in networks, fiber link design. Module - 1 Optical fiber structures and wave guides: Basic Optical laws and definitions, Optical fiber modes and configurations, step index fiber, Single mode fiber, Mode field diameter, propagation modes in single mode fiber, graded index fiber structure. Fiber materials, Photonic crystal fibers, Fiber optic cables. Signal degradation in optical fibers: Attenuation, absorption, scattering losses, bending losses, Core and cladding losses. Signal dispersion in fibers: Dispersion, intra modal, intermodal, material, waveguide dispersion, polarization mode dispersion, international standards. Specialty fibers. (9 Hours) Module - 2	(Effective fr	om the academic year 2021	l-22)	
Teaching Hours/Week(L:T:P)3:0:0SEE Marks50Total Number of Lecture Hours40Exam Hours03Course objectives:This course will enable students to:1.Acquire the knowledge about the optical fiber materials and structure.2.Understand the fundamental properties of optical fibers and networks.3.Know about the characteristics of optical networks.4.Know about various configurations of optical networks.Introduction: students will be familiar with optical fiber materials and their characteristics, optical fiber waveguides and their application in networks, fiber link design.Module - 1Optical fiber structures and wave guides:Basic Optical laws and definitions, Optical fiber modes and configurations, step index fiber structure, Ray optic representation, Cutoff wavelength, V number and the number of modes, power flow in step index fiber, Sing le mode fibers, Mode field diameter, propagation modes in single mode fiber, graded index fiber structure. Fiber materials, Photonic crystal fibers, Fiber optic cables.Signal degradation in optical fibers: Attenuation, absorption, scattering losses, bending losses.Gottical sources and Detectors:Optical sources and Detectors:Optical source materials, quantum efficiency and LED power, modulation of an LED.Laser diodes: modes and there structure, surface emitter and edge emitterSignal degradation in optical fibers: Attenuation, absorption, scattering losses, bending losses.Signal degradation in optical fibers: <td>Course Code</td> <td>21ET544</td> <td>CIE Marks</td> <td>50</td>	Course Code	21ET544	CIE Marks	50
Total Number of Lecture Hours40Exam Hours03Course objectives: This course will enable students to:I. Acquire the knowledge about the optical fiber materials and structure.2. Understand the fundamental properties of optical fibers and networks.3. Know about the characteristics of optical fibers and designing the networks for certain applications.4. Know about various configurations of optical networks.9. Know about various configurations of optical fiber materials and their characteristics, optical fiber waveguides and their application in networks, fiber link design.Module - 1Optical fiber structures and wave guides: Basic Optical laws and definitions, Optical fiber modes and configurations, step index fiber structure, Ray optic representation, Cutoff wavelength, V number and the number of modes, power flow in step index fiber, Single mode fibers, Mode field diameter, propagation modes in single mode fiber, graded index fiber structure. Fiber materials, Photonic crystal fibers, Fiber optic cables.Signal degradation in optical fibers: Attenuation, absorption, scattering losses, Core and cladding losses.Signal dispersion in fibers: Dispersion, intra modal, intermodal, material, waveguide dispersion, polarization mode dispersion, international standards. Specialty fibers.Module - 2Optical sources and Detectors: Energy bands, intrinsic and extrinsic material, direct and indirect band gaps, light emitting diodes(LEDs), LED structures, double hetero structure, surface emitter and edge emitter LEDs, Light source materials, quantum efficiency areconate fromunoaries lacer diode at LED. Laser diodees: modes and threshold conditions,	Teaching Hours/Week(L:T:P)	3:0:0	SEE Marks	50
Course objectives: This course will enable students to: Acquire the knowledge about the optical fiber materials and structure. Understand the fundamental properties of optical fibers and networks. Know about the characteristics of optical fibers and designing the networks for certain applications. Know about various configurations of optical networks. Introduction: students will be familiar with optical fiber materials and their characteristics, optical fiber structures and wave guides. Module - 1 Optical fiber structures and wave guides: Basic Optical laws and definitions, Optical fiber modes and configurations, step index fiber structure, Ray optic representation, Cutoff wavelength, V number and the number of modes, power flow in step index fiber, Single mode fibers, Mode field diameter, propagation modes in single mode fiber, graded index fiber structure. Fiber materials, Photonic crystal fibers, Fiber optic cables. Signal degradation in optical fibers: Attenuation, absorption, scattering losses, bending losses. Signal dispersion in fibers: Dispersion, intra modal, intermodal, material, waveguide dispersion, polarization mode dispersion, international standards. Specialty fibers. (9 Hours) Optical sources and Detectors: Energy bands, intrinsic and extrinsic material, direct and indirect band gaps, light emitting diodes(LEDs), LED structures, double hetero structure, surface emitter and edge emitter LEDs, Light source materials, quantum efficiency and LED power, modulation of an LED. Laser diodes: modes and threshold conditions, fabry-Perot resonator cavity, laser diode	Total Number of Lecture Hours	40	Exam Hours	03
Introduction: students will be familiar with optical fiber materials and their characteristics, optical fiber waveguides and their application in networks, fiber link design. Module – 1 Optical fiber structures and wave guides: Basic Optical laws and definitions, Optical fiber modes and configurations, step index fiber structure, Ray optic representation, Cutoff wavelength, V number and the number of modes, power flow in step index fiber, Single mode fibers, Mode field diameter, propagation modes in single mode fiber, graded index fiber structure. Fiber materials, Photonic crystal fibers, Fiber optic cables. Signal degradation in optical fibers: Attenuation, absorption, scattering losses, bending losses, Core and cladding losses. Signal dispersion in fibers: Dispersion, intra modal, intermodal, material, waveguide dispersion, polarization mode dispersion, international standards. Specialty fibers. (9 Hours) Module – 2 Optical sources and Detectors: Energy bands, intrinsic and extrinsic material, direct and indirect band gaps, light emitting diodes(LEDs), LED structures, double hetero structure, surface emitter and edge emitter LEDs, Light source materials, quantum efficiency and LED power, modulation of an LED. Laser diodes: modes and threshold conditions, fabry-Perot resonator cavity, laser diode	 Course objectives: This course will enable students to: 1. Acquire the knowledge about 2. Understand the fundamental p 3. Know about the characterist certain applications. 4. Know about various configurations 	the optical fiber materials a properties of optical fibers a ics of optical fibers and o ntions of optical networks.	and structure. and networks. designing the netw	orks for
Module – 1 Optical fiber structures and wave guides: Basic Optical laws and definitions, Optical fiber modes and configurations, step index fiber structure, Ray optic representation, Cutoff wavelength, V number and the number of modes, power flow in step index fiber, Single mode fibers, Mode field diameter, propagation modes in single mode fiber, graded index fiber structure. Fiber materials, Photonic crystal fibers, Fiber optic cables. Signal degradation in optical fibers: Attenuation, absorption, scattering losses, bending losses, Core and cladding losses. Signal dispersion in fibers: Dispersion, intra modal, intermodal, material, waveguide dispersion, polarization mode dispersion, international standards. Specialty fibers. (9 Hours) Module – 2 Optical sources and Detectors: Energy bands, intrinsic and extrinsic material, direct and indirect band gaps, light emitting diodes(LEDs), LED structures, double hetero structure, surface emitter and edge emitter LEDs, Light source materials, quantum efficiency and LED power, modulation of an LED. Laser diodes: modes and threshold conditions, fabry-Perot resonator cavity, laser diode	Introduction: students will be family optical fiber waveguides and their a	iliar with optical fiber mate pplication in networks, fibe	rials and their char er link design.	acteristics,
Optical fiber structures and wave guides: Basic Optical laws and definitions, Optical fiber modes and configurations, step index fiber structure, Ray optic representation, Cutoff wavelength, V number and the number of modes, power flow in step index fiber, Single mode fibers, Mode field diameter, propagation modes in single mode fiber, graded index fiber structure. Fiber materials, Photonic crystal fibers, Fiber optic cables. Signal degradation in optical fibers: Attenuation, absorption, scattering losses, bending losses, Core and cladding losses. Signal dispersion in fibers: Dispersion, intra modal, intermodal, material, waveguide dispersion, polarization mode dispersion, international standards. Specialty fibers. (9 Hours) Module - 2 Optical sources and Detectors: Energy bands, intrinsic and extrinsic material, direct and indirect band gaps, light emitting diodes(LEDs), LED structures, double hetero structure, surface emitter and edge emitter LEDs, Light source materials, quantum efficiency and LED power, modulation of an LED. Laser diodes: modes and threshold conditions, fabry-Perot resonator cavity, laser diode rate acuation external quantum efficiency resonant frequencies laser diode structure and		Module – 1		
Basic Optical laws and definitions, Optical fiber modes and configurations, step index fiber structure, Ray optic representation, Cutoff wavelength, V number and the number of modes, power flow in step index fiber, Single mode fibers, Mode field diameter, propagation modes in single mode fiber, graded index fiber structure. Fiber materials, Photonic crystal fibers, Fiber optic cables. Signal degradation in optical fibers: Attenuation, absorption, scattering losses, bending losses, Core and cladding losses. Signal dispersion in fibers: Dispersion, intra modal, intermodal, material, waveguide dispersion, polarization mode dispersion, international standards. Specialty fibers. (9 Hours) Module – 2 Optical sources and Detectors: Energy bands, intrinsic and extrinsic material, direct and indirect band gaps, light emitting diodes(LEDs), LED structures, double hetero structure, surface emitter and edge emitter LEDs, Light source materials, quantum efficiency and LED power, modulation of an LED. Laser diodes: modes and threshold conditions, fabry-Perot resonator cavity, laser diode rate equation external quantum efficiency resonant frequencies baser diode structure and	Optical fiber structures and wave	guides:		
structure, kay optic representation, cuton wavelengh, v number and the number of modes, power flow in step index fiber, Single mode fibers, Mode field diameter, propagation modes in single mode fiber, graded index fiber structure. Fiber materials, Photonic crystal fibers, Fiber optic cables. Signal degradation in optical fibers: Attenuation, absorption, scattering losses, bending losses, Core and cladding losses. Signal dispersion in fibers: Dispersion, intra modal, intermodal, material, waveguide dispersion, polarization mode dispersion, international standards. Specialty fibers. (9 Hours) Module – 2 Optical sources and Detectors: Energy bands, intrinsic and extrinsic material, direct and indirect band gaps, light emitting diodes(LEDs), LED structures, double hetero structure, surface emitter and edge emitter LEDs, Light source materials, quantum efficiency and LED power, modulation of an LED. Laser diodes: modes and threshold conditions, fabry-Perot resonator cavity, laser diode structure and	Basic Optical laws and definitions,	Optical fiber modes and co	onfigurations, step i	index fiber
bower now in step index noer, single mode noers, Mode neut diameter, propagatori modes in single mode fiber, graded index fiber structure. Fiber materials, Photonic crystal fibers, Fiber optic cables. Signal degradation in optical fibers: Attenuation, absorption, scattering losses, bending losses, Core and cladding losses. Signal dispersion in fibers: Dispersion, intra modal, intermodal, material, waveguide dispersion, polarization mode dispersion, international standards. Specialty fibers. (9 Hours) Module – 2 Optical sources and Detectors: Energy bands, intrinsic and extrinsic material, direct and indirect band gaps, light emitting diodes(LEDs), LED structures, double hetero structure, surface emitter and edge emitter LEDs, Light source materials, quantum efficiency and LED power, modulation of an LED. Laser diodes: modes and threshold conditions, fabry-Perot resonator cavity, laser diode rate equation external quantum efficiency resonant frequencies laser diode structure and	structure, Kay optic representation,	da mada fibara Mada fiald	diamotor propagat	ion modes
Fiber optic cables. Signal degradation in optical fibers: Attenuation, absorption, scattering losses, bending losses, Core and cladding losses. Signal dispersion in fibers: Dispersion, intra modal, intermodal, material, waveguide dispersion, polarization mode dispersion, international standards. Specialty fibers. (9 Hours) Module – 2 Optical sources and Detectors: Energy bands, intrinsic and extrinsic material, direct and indirect band gaps, light emitting diodes(LEDs), LED structures, double hetero structure, surface emitter and edge emitter LEDs, Light source materials, quantum efficiency and LED power, modulation of an LED. Laser diodes: modes and threshold conditions, fabry-Perot resonator cavity, laser diode rate equation external quantum efficiency resonant frequencies lacer diode structure and	in single mode fiber graded index	fibor structure. Fibor mat	orials Photonic cru	stal fibore
Signal degradation in optical fibers: Attenuation, absorption, scattering losses, bending losses, Core and cladding losses. Signal dispersion in fibers: Dispersion, intra modal, intermodal, material, waveguide dispersion, polarization mode dispersion, international standards. Specialty fibers. (9 Hours) Module – 2 Optical sources and Detectors: Energy bands, intrinsic and extrinsic material, direct and indirect band gaps, light emitting diodes(LEDs), LED structures, double hetero structure, surface emitter and edge emitter LEDs, Light source materials, quantum efficiency and LED power, modulation of an LED. Laser diodes: modes and threshold conditions, fabry-Perot resonator cavity, laser diode rate equation, external quantum efficiency resonant frequencies laser diode structure and	Fiber ontic cables.	inder structure. Fiber mat		star mbers,
losses, Core and cladding losses. Signal dispersion in fibers: Dispersion, intra modal, intermodal, material, waveguide dispersion, polarization mode dispersion, international standards. Specialty fibers. (9 Hours) Module – 2 Optical sources and Detectors: Energy bands, intrinsic and extrinsic material, direct and indirect band gaps, light emitting diodes(LEDs), LED structures, double hetero structure, surface emitter and edge emitter LEDs, Light source materials, quantum efficiency and LED power, modulation of an LED. Laser diodes: modes and threshold conditions, fabry-Perot resonator cavity, laser diode rate equation external quantum efficiency resonant frequencies laser diode structure and	Signal degradation in optical fib	ers: Attenuation. absorpti	on. scattering losse	s. bending
Signal dispersion in fibers: Dispersion, intra modal, intermodal, material, waveguide dispersion, polarization mode dispersion, international standards. Specialty fibers. (9 Hours) Module – 2 Optical sources and Detectors: Energy bands, intrinsic and extrinsic material, direct and indirect band gaps, light emitting diodes(LEDs), LED structures, double hetero structure, surface emitter and edge emitter LEDs, Light source materials, quantum efficiency and LED power, modulation of an LED. Laser diodes: modes and threshold conditions, fabry-Perot resonator cavity, laser diode rate equation external quantum efficiency resonant frequencies laser diode structure and	losses. Core and cladding losses.	••••••••••••••••••••••••••••••••••••••		<i>c) containing</i>
Module – 2 Optical sources and Detectors: Energy bands, intrinsic and extrinsic material, direct and indirect band gaps, light emitting diodes(LEDs), LED structures, double hetero structure, surface emitter and edge emitter LEDs, Light source materials, quantum efficiency and LED power, modulation of an LED. Laser diodes: modes and threshold conditions, fabry-Perot resonator cavity, laser diode rate equation external quantum efficiency resonant frequencies laser diode structure and	Signal dispersion in fibers: Dis dispersion, polarization mode dispe	persion, intra modal, inte rsion, international standa	rmodal, material, rds. Specialty fibers	waveguide (9 Hours)
Optical sources and Detectors: Energy bands, intrinsic and extrinsic material, direct and indirect band gaps, light emitting diodes(LEDs), LED structures, double hetero structure, surface emitter and edge emitter LEDs, Light source materials, quantum efficiency and LED power, modulation of an LED. Laser diodes: modes and threshold conditions, fabry-Perot resonator cavity, laser diode structure and		Module – 2		
Energy bands, intrinsic and extrinsic material, direct and indirect band gaps, light emitting diodes(LEDs), LED structures, double hetero structure, surface emitter and edge emitter LEDs, Light source materials, quantum efficiency and LED power, modulation of an LED. Laser diodes: modes and threshold conditions, fabry-Perot resonator cavity, laser diode rate equation, external quantum efficiency, resonant frequencies, laser diode structure and	Optical sources and Detectors:			
Laser diodes: modes and threshold conditions, fabry-Perot resonator cavity, laser diode	Energy bands, intrinsic and extrins diodes(LEDs), LED structures, dou LEDs, Light source materials, quant	ic material, direct and indi ble hetero structure, surf rum efficiency and LED pow	rect band gaps, light ace emitter and ed ver, modulation of a	nt emitting ge emitter n LED.
THE ENDOUND EXECUTED AND AND THE END AND DEPENDENTIAL AVECOMES AND THE AND THE AND	rate equation external quantum of	in comunions, labry-perot	resoliator cavity, l vies laser diode stru	aser uroue

radiation patterns, single mode lasers, modulation of laser diode, Temperature effects.

Photo detectors: P-I-N and avalanche photo detectors, photo detector noise, signal to noise ratio, response time, and double hetero structure photo diodes, temperature effects on avalanche gain and performance measurements.

(8 Hours)

Optical receiver operation:

Digital system transmission, basic components of an optical receiver, error sources, front end amplifier, high impedance and transimpedance amplifier, digital receiver performance, receiver sensitivity, quantum limit, eye diagram, BER and Q-factor measurement, burst mode receivers, analog receivers.

(8 Hours)

Analog links:

Basic elements of an analog link, noise contributors, multichannel amplitude and frequency modulation, subcarrier multiplexing, RF-over fiber link, Radio over fiber link.

Digital links: point to point links, link power budget, Rise-Time budget.

Optical amplifiers: Semiconductor optical amplifiers, Erbium-doped fiber amplifiers, optical SNR, Power, in-line, post and pre amplifiers, multi channel operation. Raman amplifiers. Wideband optical amplifiers.

(7 Hours)

Module – 4

Power Launching and coupling:

Source-to –Fiber power launching, lensing scheme for power improvement, Fiber-to-Fiber , LED coupling to single mode Fibers, Fiber splicing, optical fiber connectors

WDM Concepts and components: definition, implementation of WDM network, WDM standards,

Passive optical couplers: 2X2 fiber coupler, 2X2 waveguide coupler, Star couplers, Machzehnder interferometer multiplexers, optical isolators and circulators.

Fiber grating filters: Fiber bragg grating and its applications, dielectric thin film filters,

(7 Hours)

Optical networks:

Network concepts (network terminology, network categories, Network layers, OSI model), Network topologies(bus, ring, star and mesh), SONET/SDH frame structures, rings, SDH networks, High speed Light wave links, Optical Add/Drop multiplexing.

Module – 5

Passive optical networks: Basic PON architecture, Active PON modules, GPON characteristics, WDM PON architectures, IP Over DWDM, optical Ethernet.

Performance Measurement and Monitoring:

Measurement standards, power measurement, optical time domain reflectometer (OTDR), optical performance monitoring.

Summary of the Course: students will be acquiring knowledge in interpreting different optical fiber materials and networks including design.

(9 Hours)

Course outcomes: The students will be able to:

- **CO1:** Understand the fundamentals of Optical fibres, their modes and the optical networks
- **CO2: Apply** the knowledge of optics to solve problems related to fibre optics and networks
- **CO3: Analyse** the optical fibre cable and networks with respect to their characteristics
- **CO3:** Perform in a **grou**p to carry out a **PPT presentation/quiz** related to fibre optics

and submit the report for the same

CO4: Interpret the case study question in fibre optics and networks applications.

Textbooks:

- 1. Gerd Keiser, Optical fiber communication, 5th Edition, McGraw Hill education (India) Private Limited
- 2. John M senior, Optical fiber communications, principles and practice, 3rd Edition, Pearson education

References:

- 1. Optical fiber communication Gerd Keiser, 5th Edition McGraw Hill education (India) private Limited.
- 2. Optical fiber communications, principles and practice John M senior, 3rd Edition Pearson education.

B.E ELECTRONICS AND TELECOMMUNICATION ENGINEERING

Choice Based Credit System (CBCS)

SEMESTER - V

OOPs Using C++ (3:0:0) 3 (Effective from the academic year 2021-22)

Course Code	21ET545	CIE Marks	50
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	50
Total Number of Lecture Hours	40	Exam Hours	03

Course Objectives:

This course will enable students to:

- 1. Understand the basic concepts of object oriented programming language.
- 2. Learn Programming skills using OOPs.
- 3. Write the program for specific applications using OOPs concepts

Module – 1

Introduction: To OOPS concepts, Highlighting the importance of moving from procedure oriented programming to object oriented programming in reality. Probable applications of OOPs highlighting its impact on industry and revenue aspects of it.

Beginning with C++ and its features:

Getting started, the C++ program, Pre-processor Directives, The Built-In Array Data type, An object-oriented design, An exception based design, An array and pointers.

The Basic Language: Literal constant, Variables, Pointer type, String types, constant Qualifier, Reference types, the bool type, Enumeration type, Array Types.

(9 Hours)

Module – 2

Operators:

Arithmetic operators, Relational and Logical operators, Assignment operators, Increment and Decrement operators, The conditional operator, Bitwise operators. **Statements:** if, switch, for Loop, while, break, Go to, continue statements. **Functions:** Prototype, Argument passing, Recursion and Inline functions.

(7 Hours)

Exception Handling:

Meaning of Exceptions, Structure of exception handling, throwing an exception, catching an exception, Exception specification and Exceptions and Design issues.

Module - 3

(7 Hours)

Classes:

Definition, class objects, class Initialization, Class constructor, The class destructor, class object arrays.

Overload Operators: Unary, Binary, operators++ and --, Operators new and delete (Detailed discussion on programming with examples on these concepts).

(8 Hours)

Module – 4

Module – 5

Inheritances:

Different forms of Inheritances, private, Public, and protected inheritance, Class scope under Inheritance, Programming on Single, Multilevel, and multiple inheritances.

Summary of the Course:

The course on OOPs gives concepts of programming language starting from the different data types to special data types including user defined types and operators to functions. OOPs emphasizes on classes, objects and their initialization in programming. It also covers important concepts like operator overloading, polymorphism and different forms of Inheritance concepts with its applications.

(9 Hours)

Note: Students have to undergo MOOCS/NPTEL Course on OOPS/C++ concepts submit the certificate with score obtained in the exam.

Course Outcomes: The Students will be able to:

- CO1: Understand different data types in C++ and Importance of OOPS Apply the knowledge and realize the logic using different logical techniques
- CO2: **Apply** the basic knowledge of operators, Control statements and Functions to write C++ programs
- CO3: **Analyse** the different Object oriented programming concepts in writing programs
- CO4: **Design** and Develop Object oriented programs to generate the expected output/results
- CO5: **Design** and Interpret object oriented programming paradigms to develop solutions to real world problems

Text Books

- 1. E.Balaguruswamy, Object Oriented Programming with C++, 4th Edition, TMH, 2013.
- 2. Venugopal, Object Oriented Programming with C++, 3rd Edition, 2013.

References

- 1. P.B Kotur, "Object oriented Programming with C++", Sapnabook house, 2013.
- 2. Lipmann, "OOPS with C++", Pearson, 2011.

B.E ELECTRONICS AND TELECOMMUNICATION ENGINEERING CBCS)

Choice Based	Credit	System	(C)

	SEMESTER – V		
	Signal Processing (2:1:0) 3	5	
(Effectiv	e from the academic year 2	021-22)	
Course Code	21EC55	CIE Marks	50
Teaching Hours/Week (L:T:P)	2:2:0	SEE Marks	50
Total Number of Contact Hours	40	Exam Hours	03

Course objectives:

This course will enable students to:

- 1. Understand different signals, mathematical operations and convolution.
- 2. Analyze Linear Time Invariant (LTI) systems in time and transform domains
- 3. Study the importance of mathematical tools such as Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT) to analyse the signal.
- 4. Design and realization of FIR and IIR filters in different structural forms

Module - 1

Introduction to signals and systems: Introduction to signals and systems, significance and scope of signal processing in current scenario, industry applications, research and innovations related to digital signal processing, impact of the course on societal problems. Definition of signal and systems, Classification of signals, Elementary signals, Basic operations on signals, System definition, classification and properties.

(9 Hours)

Module - 2

Time Domain representation of LTI system:

Impulse response, convolution sum, convolution integral. Computation of convolution sum and convolution integral using graphical method for unit step and unit step, unit step and exponential, exponential and exponential, unit step and rectangular.

(7 Hours)

Module - 3

Discrete Fourier transform:

Frequency domain sampling and reconstruction of discrete time signals. The Discrete Fourier transform, DFT as a linear transformation, properties of DFT: Linearity, Time shift, Time reversal, Frequency shift, Convolution and Parseval's (Remaining properties statements only).

Linear filtering methods based on the DFT:

Use of DFT in Linear Filtering, Filtering of Long Data Sequences.

(8 Hours)

Module – 4 Fast- Fourier Transform (FFT) Algorithms:

Efficient computation of the DFT, Radix-2 FFT algorithms for the computation of DFT and IDFT decimation in time and decimation in frequency algorithms

(7 Hours)

Module - 5

Design of IIR & FIR Filters:

Analog Butterworth Filters, Analog Filters using Lowpass prototype transformation. Bilinear Transformation and Frequency Warping, Digital Butterworth Filter Design using BLT. Design of Linear-phase FIR filters using windows - Rectangular, Hamming and hanning windows. (No derivations for BLT and FIR).

Realization of IIR & FIR Filters:

Direct form I and Direct form II realization of an IIR filter, Direct form I and Lattice realization of FIR filter.

Summary of the course: Course covers the basics of signals, system analysis in time domain, DFT on sequences, computational efficiency of FFT algorithms, design of IIR and FIR filters and realization.

Note: Students are required to execute toolboxes in MATLAB/ equivalent modern tool required for Digital signal processing, Apply these concepts to solve societal problems and submit the report as part of course. Some sample problems are given.

- i To analyse and design a filter for any real time signal.
- ii To compute basic signal processing operations in time and frequency domain on the pre-processed signal.
- iii Case study examples

(9 Hours)

Course outcomes: The students will be able to:

- CO1: **Apply** the fundamentals of mathematics to classify and perform various operations and transformations on signals and systems.
- CO2: **Analyze** the continuous and discrete time systems in time and transfer domain.
- CO3: **Design** different types of filters for communication and signal processing.
- CO4: **Interpret** the given case study material related to design and demonstrate an application of digital signal processing.
- CO5: Perform in a **group** to **design** and execute an application of any digital signal processing operations using modern tools.

Textbooks:

- 1. Simon Haykin and Barry Van Veen, "Signals and Systems", Wiley India, 2008
- Proakis & Monalakis, "Digital signal processing Principles Algorithms & Applications", 4th Edition, Pearson education, New Delhi,2007.
- 3. Li Tan, Jean Jiang, "Digital Signal processing-Fundamentals and Applications", Academic Press 2013.

References:

- 1. Sanjit K Mitra, "Digital Signal Processing, A Computer Based Approach", 4th Edition,McGraw Hill Education, 2013.
- 2. Oppenheim & Schaffer, "Discrete Time Signal Processing", PHI,2003.

B.E ELECTRONICS	AND TELECOMMUNICATION noice Based Credit System (CBCS) SEMESTER - V	ENGINEERING	
Advar (Effectiv	aced Electromagnetics (3:0:0 e from the academic year 202) 3 1-22)	
Course Code	21EC56	CIE Marks	50
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	50
Total Number of Contact Hours	40	Exam Hours	03
 Course objectives: This course will enable students to 1. Familiarize with the distribut 2. Learn the concepts of magicircuits. 3. Derive the Maxwell's equation 4. Know the concepts of transm Introduction: Significance and S Economic growth of Nation, In 	o: ion of electric charge and field netic field distribution and ns required for Electromagnet ission line theory at RF range. Scope of the course, Importa- npact of the course on Soc	ls magnetic forces ic wave propagat nce of the Cours ietal Problems/	for different ion e/Subject in Sustainable
Solutions/ National Economy, status/trends.	Career Perspective, Innov	ations (Current), Research
	Module – 1		
Gauss' law, Divergence. Maxwel divergence theorem. Ampere's ci density, Farday's law, displacemen Self-study topics: Simulation programming tools.	ll's First equation (Electrost rcuital law, Curl, Stokes' theo nt current of vector calculus operat	atics), Vector O prem, Magnetic fl	perator and ux and Flux v software/
	Module - 2		() Hoursj
Maxwell's equations: Maxwell's form. Uniform Plane Wave: Wave pr theorem and wave power, Skin Ef Self-study topics: Analyse of the and write the inference from the r	equations in point form, Ma opagation in free space and fect. e given program which simu esults	xwell's equation good conductors ates the Maxwel	s in integral s. Poynting's ls equations (8 Hours)
	Module – 3		
Transmission Line theory: Introduction, transmission lines coefficients, standing waves and using single stubs and double stub	equations and solutions, SWR, line impedance. Smith os.	reflection and t 1 chart, impedan	ransmission ce matching
			(7 Hours)
	Module – 4		

Microwave Network theory:

Symmetrical Z and Y-Parameters, for reciprocal Networks, S matrix representation of multiport Networks.

Microwave Passive Devices: Attenuators, Phase shifters, Waveguide Tees, Four port Circulator, Faraday rotation Isolator, Directional Coupler

(7 Hours)

Module – 5

Strip Lines: Introduction, Micro Strip lines, Characteristic impedance, Losses, Q factor in Microstrip lines, Parallel strip lines, Distributed parameters, Characteristic impedance and Attenuation losses in parallel strip lines, Coplanar strip lines, Shielded strip Lines

(9 Hours)

Summary of the course: The student will be able to explore the characteristics of the field distribution for the propagation of waves at RF and Microwave range.

Course outcomes: The students will be able to:

- CO1: **Apply** the knowledge of mathematics to solve the problems related to Electromagnetics, Time varying fields and Transmission lines
- CO2: **Analyse** different field configurations to derive Electromagnetic Field Equations and propagation of wave through medium
- CO3: **Interpret** the given case study material related to the application of electromagnetics and transmission lines.
- CO4: Perform in a **group** to make an effective presentation on electromagnetic radiation **hazards**, EM waves, effect of EM waves on environment and applications of electromagnetics and transmission lines.

Textbooks:

- 1. W.H. Hayt and J.A. Buck, "Engineering Electromagnetics", 7th Edition, Tata McGraw-Hill, 2009.
- 2. Samuel Liao, "Microwave Devices and circuits", 3rd Ed, Pearson Education, 2008.
- Annapurna Das and Sisir K Das, "Microwave Engineering", TMH Publication, 2nd, 2010.

References:

- 1. John Krauss and Daniel A Fleisch, "Electromagnetics with applications", 5th Edition, McGraw-Hill ,2010.
- 2. David M Pozar, "Microwave Engineering", 4th Edition, John Wiley, 2011.

B.E ELECTRONICS A Cho	ND TELECOMMUNICATION E Dice Based Credit System (CBCS) SEMESTER – V	ENGINEERING	
Embedo	ded controller & VLSI (3:1:0)	4	
(Effective	from the academic year 2021-	22)	
Course Code	21ET57	CIE Marks	50
Teaching Hours/Week(L:T:P)	3:2:0	SEE Marks	50
Total Number of Lecture Hours	50	Exam Hours	03
 This course enables students to: 1. Program the 8051 using the v 2. Understand the architectura CMOS VLSI Design 3. Learn the concept of CMOS V 4. Study the different types of C Introduction: Microprocessors microcontrollers in current scenar to microcontrollers impact of courses and the second seco	various instructions for differe l features and instruction set LSI to build the schematic and MOS logic structure. versus Microcontrollers, S rio, industry applications, resea rse on societal problems	nt applications. of 8 bit microcor layout. ignificance and urch and innovat	ntroller and scope of ions related
to microcontroners, impact of cou	Modulo 1		
Embedded Microcontrollers: 8051 Architecture- Registers, organization. External Memory (R instructions.	Pin diagram, I/O ports fu OM & RAM) interfacing, 8051 Module – 2	nctions, Interna Stack, Stack and	al Memory Subroutine (10 Hours)
8051 Instruction Set: Address instructions, Logical instructions. 8051 Instruction Set: Branch ins language program examples (with	ssing Modes, Data Transfe tructions, Bit manipulation ins out loops) to use these instruc	r instructions, structions. Simpl stions.	Arithmetic e Assembly (10 Hours)
	Module – 3		
MOS Transistor Theory: Introduction, Fabrication process- nmos, pmos, CMOS, MOS Device Design Equations, The Complementary CMOS Inverter – DC Characteristics, Static Load MOS Inverters, The Differential Inverter, The Transmission Gate, Tristate Inverter.			
	Module – 4		<u> </u>
Circuit Design Processes : MOS layers. Stick diagrams. Design Examples. Layout diagrams. Symbol	n rules and layout – lambda-ba olic diagrams. Basic Physical D Module – 5	ased design and esign of Simple le	other rules. ogic gates. (10 Hours)

CMOS Logic Structures:

CMOS Complementary Logic, Bi CMOS Logic, Pseudo-nMOS Logic, Dynamic CMOS Logic, Clocked CMOS Logic, Pass Transistor Logic, CMOS Domino Logic Cascaded Voltage Switch Logic (CVSL).

Summary of the Course : The student will be able to understand the Architecture and Instruction set of microcontroller and CMOS VLSI design approaches for various logic structure.

(10 Hours)

Course outcomes: The students will be able to:

- CO1: Describe the architectural features and instructions of 8 bit microcontroller and basic MOS transistor.
- CO2: **Apply** the knowledge gained for Programming 8051 for different applications and obtain the schematic and layout for logic circuits.
- CO3: Analyse the different CMOS logic structures.
- CO4: **Interpret** the given case study material related to Application of microcontroller and CMOS design.
- CO5: **Demonstrate** the applications of embedded systems using 8051 through interfacing programs or simulate the different combinational/ sequential structures of CMOS logic.

Textbooks:

- 1. Muhammad Ali Mazidi and Janice Gillespie Mazidi, "8051 Micro controller and Embedded System", 2nd Edition, Pearson Education Publication, 2006.
- 2. N.H. Weste and David Harris, "CMOS VLSI Design A Circuits and Systems Perspective", 3rd Edition, Wesley, 2005

3. Douglas A. Pucknell & Kamran Eshraghian , Basic VLSI Design , 3rd Edition, PHI, 2005 **References:**

- 4. Kenneth Ayala, "The 8051 Microcontroller, Architecture, Programming and Apllications", West Publishing Company, 3rd Edition, 2010.
- 5. R. Jacob Baker, "CMOS Circuit Design, Layout and Simulation", John Wiley India Pvt. Ltd, 2008 .

B.E ELECTRONICS AND TELECOMMUNICATION ENGINEERING

Choice Based Credit System (CBCS)

SEMESTER - V

Signal Processing Laboratory (0:0:1) 1

(Effective from the academic year 2021-22)

Course Code	21ECL58A	CIE Marks	50
Teaching Hours/Week (L:T:P)	0:0:2	SEE Marks	50
Total Number of Contact Hours	26	Exam Hours	03

Course objectives:

This course will enable students to:

- 1. Simulate discrete time signals and verify sampling theorem.
- 2. Compute convolution, correlation and verify its properties.
- 3. Find solution of difference equation and determine the response to impulse, step and sinusoidal inputs.
- 4. Compute DFT using inbuilt functions and analyse the properties.
- 5. Compute and display the filtering operations and compare with the theoretical values.
- 6. Familiarity with DSP kits and implement basic operations of signals & systems

Part-A: Simulation Experiments

Following Experiments to be done using MA TLAB Following Experiments to be done using MA TLAB:

- 1. Verification of sampling theorem in time domain and frequency domain.
- 2. Linear and Circular convolution of two given sequences, Commutative, distributive and associative property of convolution.
- 3. Solving a given difference equation
- 4. Auto and cross correlation of two sequences and verification of their properties
- 5. Computation of N point DFT of a given sequence and to plot the magnitude and phase spectrum (using DFT equation and verify it by built-in routine).
 - (i) Verification of DFT properties (like Linearity and Parseval's theorem, etc.)
 - (ii) DFT computation of square pulse and Sinc function etc.
- 6. Design and implementation of Low pass and High pass FIR filter to meet the desired specifications (using different window techniques).
- 7. Design and implementation of a digital IIR filter (Low pass and High pass) to meet given specifications.

PART-B Experiments on DSK

- 1. Obtain the Linear convolution of two sequences.
- 2. Compute Circular convolution of two sequences.
- 3. Compute the N-point DFT of a given sequence.
- 4. Determine the Impulse response of first /second order system

Open ended experiment

Students have to carry out mini project on signal processing of Image / 1-D signals, present and prepare the report for the same.

Course outcomes: The students will be able to:

- CO1: **Write** a code to carry out various basic operations on discrete signals and verify them using MATLAB / OCTAVE software.
- CO2: **Simulat**e the programs and execute them on the DSP Starter Kit using Code Composer Studio Software tool.
- CO3: **Write** the report for the conducted experiment.
- CO4: **Conduct** open ended experiment to analyse 1-D /2-D signals.

Textbooks:

1. Vinay K Ingle, John G Proakis, "Digital Signal Processing using MATLAB", 4th Edition, Cengage India Private Limited,2017.

SEMESTER - V Embedded Controller & VLSI Laboratory (0:0:1) 1 (Effective from the ecodomic year 2021-22)
Embedded Controller & VLSI Laboratory (0:0:1) 1
(Ellecuve from the academic year 2021-22)
Course Code 21E1L58B CIE Marks 50
Teaching Hours/Week(L:T:P) 0:0:2 SEE Marks 50
Total Number of Lecture Hours26Exam Hours03
Course objectives: This course will enable students to:
1. Understand the instruction set of 8051, an 8 bit microcontroller and the software tool
required for programming in Assembly and C language.
2. Interface external devices and I/O with 8051 microcontroller.
3. Expertise working with CADNCE tool and library functions for CMOS structures
Part-A
Programs:
1. Write a program for Data Transfer - Block move, Exchange, Sorting, Finding largest
 Write a program to perform Arithmetic Instructions - Addition/subtraction,
multiplication.
3. Write a program to verify the functionality of UP/DOWN Counters.
4. Write a program to verify Boolean & Logical Instructions (Bit manipulations).
- ASCII.
6. Draw the schematic and Layout of a CMOS Inverter using library files.
7. Draw the schematic and Layout of a CMOS 2 input NAND gate using library files.
load.
9. Design an 4Bit UP/DOWN Counter Asynchronous Reset Counter
a. Write Verilog Code
b. Verify the Functionality using Test-bench
c. Synthesize the Gate Level Netlist by setting Area and Timing Constraints and also
10 Perform the above for 32Bit IIP/DOWN Counter
11. Design a Latch and Flip-Flop to compare the synthesis report of D. SR. IK.
Note: Experiments 6-11 have to be executed using Cadence tool.
PART-B Experiments on DSK
Interfacing:
1. Interface and Control a DC Motor.
2. Interface a Stepper motor and rotate it in clockwise and anti-clockwise direction.
5. Interface a DAC and generate Triangular and square waveforms.
Course Outcomes: The students will be able to:
CO1: Conduct the experiments related to microcontroller and VLSL using Keil uVision
IDE and Cadence respectively.
CO2: Write the report for the conducted experiment.
CO3: Conduct open end experiment to analyse any small embedded systems