
BMS INSTITUTE OF TECHNOLOGY AND
MANAGEMENT

Avalahalli, Doddaballapura Main Road, Bangalore – 560064

Electronics and Communication Engineering

Subject: ARM and Embedded System

Code: 17EC62

Table of Contents

Sl.No Modules Page.No

1 1 1-13

2 2 14-38

3 3 39-78

4 4 79-92

5 5 93-126

EMBEDDED SYSTEM COMPONENTS MODULE-3

.DEFINITION OF AN EMBEDDED SY STEM

An embedded system is a combination of 3 types of components: a. Hardware b. Software c.

Mechanical Components and it is supposed to do one specific task only.

Example 1: Washing Machine

 A washing machine from an embedded systems point of view has: a. Hardware: Buttons, Display

& buzzer, electronic circuitry. b. Software: It has a chip on the circuit that holds the software which

drives controls & monitors the various operations possible. c. Mechanical Components: the

internals of a washing machine which actually wash the clothes control the input and output of

water, the chassis itself.

Example 2: Air Conditioner

 An Air Conditioner from an embedded systems point of view has: a. Hardware: Remote, Display

& buzzer, Infrared Sensors, electronic circuitry. b. Software: It has a chip on the circuit that holds

the software which drives controls & monitors the various operations possible. The software

monitors the external temperature through the sensors and then releases the coolant or suppresses

it. c. Mechanical Components: the internals of an air conditioner the motor, the chassis, the outlet,

etc An embedded system is designed to do a specific job only.

 Example: a washing machine can only wash clothes, an air conditioner can control the

temperature in the room in which it is placed.

The hardware & mechanical components will consist all the physically visible things that are used

for input, output, etc. An embedded system will always have a chip (either microprocessor or

microcontroller) that has the code or software which drives the system

EMBEDDED SYSTEM & GENERAL PURPOSE COMPUTER

The Embedded System and the General purpose computer are at two extremes. The embedded

system is designed to perform a specific task whereas as per definition the general purpose

computer is meant for general use. It can be used for playing games, watching movies, creating

software, work on documents or spreadsheets etc. Following are certain specific points that

differenciates between embedded systems and general purpose computers:

EMBEDDED SYSTEM COMPONENTS MODULE-3

CLASSIFICATION OF EMBEDDED SYSTEMS

The classification of embedded system is based on following criteria's:

 On generation

 On complexity & performance

 On deterministic behavior

 On triggering

 On generation:

1. First generation (1G):

 Built around 8bit microprocessor & microcontroller.

 Simple in hardware circuit & firmware developed.

 Examples: Digital telephone keypads.

2. Second generation (2G):

 Built around 16-bit µp & 8-bit µc.

 They are more complex & powerful than 1G µp & µc.

EMBEDDED SYSTEM COMPONENTS MODULE-3

 Examples: SCADA systems

3. Third generation (3G):

 Built around 32-bit µp& 16-bit µc.

 Concepts like Digital Signal Processors (DSPs), Application Specific Integrated

Circuits(ASICs) evolved. Examples: Robotics, Media, etc.

4. Fourth generation:

 Built around 64-bit µp & 32-bit µc.

 The concept of System on Chips (SoC), Multicore Processors evolved.

 Highly complex & very powerful. Examples: Smart Phones.

 On complexity & performance:

1. Small-scale:

 Simple in application need

 Performance not time-critical.

 Built around low performance& low cost 8 or 16 bit µp/µc. Example: an electronic toy

2. Medium-scale:

 Slightly complex in hardware & firmware requirement.

 Built around medium performance & low cost 16 or 32 bit µp/µc.

 Usually contain operating system.

 Examples: Industrial machines.

3. Large-scale:

 Highly complex hardware & firmware.

 Built around 32 or 64 bit RISC µp/µc or PLDs or Multicore-Processors.

 Response is time-critical.

 Examples: Mission critical applications.

 On deterministic behavior:

 This classification is applicable for “Real Time” systems.

 The task execution behavior for an embedded system may be deterministic or non-

deterministic.

 Based on execution behavior Real Time embedded systems are divided into Hard and

Soft.

EMBEDDED SYSTEM COMPONENTS MODULE-3

 On triggering

 Embedded systems which are “Reactive” in nature canbe based on triggering.

 Reactive systems can be:

 Event triggered

 Time triggered

APPLICATION OF EMBEDDED SYSTEM

The application areas and the products in the embedded domain are countless.

1. Consumer Electronics: Camcorders, Cameras.

2. Household appliances: Washing machine, Refrigerator.

3. Automotive industry: Anti-lock breaking system(ABS), engine control.

4. Home automation & security systems: Air conditioners, sprinklers, fire alarms.

5. Telecom: Cellular phones, telephone switches.

6. Computer peripherals: Printers, scanners.

7. Computer networking systems: Network routers and switches.

8. Healthcare: EEG, ECG machines.

9. Banking & Retail: Automatic teller machines, point of sales.

10. Card Readers: Barcode, smart card readers.

PURPOSE OF EMBEDDED SYSTEM

1. Data Collection/Storage/Representation

 Embedded system designed for the purpose of data collection performs acquisition

of data from the external world.

 Data collection is usually done for storage, analysis, manipulation and

transmission.

 Data can be analog or digital.

 Embedded systems with analog data capturing techniques collect data directly in

the form of analog signal whereas embedded systems with digital data collection

EMBEDDED SYSTEM COMPONENTS MODULE-3

mechanism converts the analog signal to the digital signal using analog to digital

converters.

 If the data is digital it can be directly captured by digital embedded system.

 A digital camera is a typical example of an embedded System with data

collection/storage/representation of data.

 Images are captured and the captured image may be stored within the memory of

the camera. The captured image can also be presented to the user through a graphic

LCD unit.

2. Data communication

 Embedded data communication systems are deployed inapplications from complex

satellite communication to simple home networking systems.

 The transmission of data is achieved either by a wire-lin medium or by a wire-less

medium. Data can either be transmitted by analog means or by digital means.

 Wireless modules-Bluetooth, Wi-Fi.

 Wire-line modules-USB, TCP/IP.

 Network hubs, routers, switches are examples of dedicated data transmission

embedded systems.

3. Data signal processing

 Embedded systems with signal processing functionalities are employed in

applications demanding signal processing like speech coding, audio video codec,

transmission applications etc.

 A digital hearing aid is a typical example of an embedded system employing data

processing. Digital hearing aid improves the hearing capacity of hearing impaired

person.

4. Monitoring

 All embedded products coming under the medical domain are with monitoring

functions. Electro cardiogram machine is intended to do the monitoring of the

heartbeat of a patient but it cannot impose control over the heartbeat.

 Other examples with monitoring function are digital CRO, digital multi-meters, and

logic analyzers.

5. Control

 A system with control functionality contains both sensors and actuators Sensors are

connected to the input port for capturing the changes in environmental variable and

the actuators connected to the output port are controlled according to the changes

in the input variable.

 Air conditioner system used to control the room temperature to a specified limit is

a typical example for CONTROL purpose.

EMBEDDED SYSTEM COMPONENTS MODULE-3

6. Application specific user interface

 Buttons, switches, keypad, lights, bells, display units etc are application specific

user interfaces.

 Mobile phone is an example of application specific user interface.

 In mobile phone the user interface is provided through the keypad, system speaker,

vibration alert etc.

CORE OF EMBEDDED SYSTEMS

Embedded systems are domain and application specific and are built around a central core. The

core of the embedded system falls into any of the following categories:

1. General purpose and Domain Specific Processors Microprocessors Microcontrollers Digital

Signal Processors.

2. Application Specific Integrated Circuits. (ASIC)

3. Programmable logic devices(PLD’s)

4. Commercial off-the-shelf components (COTs)

GENERAL PURPOSE AND DOMAIN SPECIFIC PROCESSOR.

• Almost 80% of the embedded systems are processor/ controller based.

• The processor may be microprocessor or a microcontroller or digital signal processor, depending

on the domain and application.

Microprocessors

 A microprocessor is a silicon chip representing a central processing unit.

 A microprocessor is a dependent unit and it requires the combination of other hardware

like memory, timer unit, and interrupts controller, etc. for proper functioning.

Developers of microprocessors.

 Intel – Intel 4004 – November 1971(4-bit).

 Intel – Intel 4040. o Intel – Intel 8008 – April 1972.

 Intel – Intel 8080 – April 1974(8-bit).

 Motorola – Motorola 6800.

 Intel – Intel 8085 – 1976.

 Zilog - Z80 – July 1976.

EMBEDDED SYSTEM COMPONENTS MODULE-3

Architectures used for processor design are Harvard or VonNeumann.

EMBEDDED SYSTEM COMPONENTS MODULE-3

Microcontrollers

 A microcontroller is a highly integrated chip that contains aCPU, scratch pad RAM, special

and general purpose register arrays,on chip ROM/FLASH memory for program storage ,

timer and interrupt control units and dedicated I/O ports.

 Texas Instrument’s TMS 1000 Is considered as the world’s first microcontroller.

 Some embedded system application require only 8 bit controllers whereas some requiring

superior performance and computational needs demand 16/32 bit controllers.

 The instruction set of a microcontroller can be RISC or CISC.

 Microcontrollers are designed for either general purpose application requirement or

domain specific application requirement.

Digital Signal Processors

 DSP are powerful special purpose 8/16/32 bit microprocessor designed to meet the

computational demands and power constraints of today’s embedded audio, video and

communication applications. DSP are 2 to 3 times faster than general purpose

microprocessors in signal processing applications.

 This is because of the architectural difference between DSP and general purpose

microprocessors.

 DSPs implement algorithms in hardware which speeds up the execution whereas general

purpose processor implement the algorithm in software and the speed of execution depends

primarily on the clock for the processors.

 DSP includes following key units:

 i. Program memory: It is a memory for storing the program required by DSP to process

the data. ii. Data memory: It is a working memory for storing temporary variables and

data/signal to be processed.

 iii. Computational engine: It performs the signal processing in accordance with the stored

program memory computational engine incorporated many specialized arithmetic units and

each of them operates simultaneously to increase the execution speed. It also includes

multiple hardware shifters for shifting operands and saves execution time.

 iv. I/O unit: It acts as an interface between the outside world and DSP. It is responsible for

capturing signals to be processed and delivering the processed signals.

 Examples: Audio video signal processing, telecommunication and multimedia

applications. SOP(Sum of Products) calculation, convolution, FFT(Fast Fourier

Transform), DFT(Discrete Fourier Transform), etc are some of the operation performed by

DSP.

EMBEDDED SYSTEM COMPONENTS MODULE-3

Application Specific Integrated Circuits. (ASIC)

 ASICs is a microchip design to perform a specific and unique applications.

 Because of using single chip for integrates several functions there by reduces the system

development cost.

 Most of the ASICs are proprietary (which having some trade name) products, it is referred

as Application Specific Standard Products(ASSP).

 As a single chip ASIC consumes a very small area in the total system.

 Thereby helps in the design of smaller system with high capabilities or functionalities.

 The developers of such chips may not be interested in revealing the internal detail of it .

Programmable logic devices(PLD’s)

 A PLD is an electronic component. It used to build digital circuits which are reconfigurable.

 A logic gate has a fixed function but a PLD does not have a defined function at the time of

manufacture.

 PLDs offer customers a wide range of logic capacity, features, speed, voltage

characteristics. PLDs can be reconfigured to perform any number of functions at any time.

 A variety of tools are available for the designers of PLDswhich are inexpensive and help

to develop, simulate and test the designs.

PLDs having following two major types.

1) CPLD(Complex Programmable Logic Device): CPLDs offer much smaller amount of

logic up to 1000 gates.

2) FPGAs(Field Programmable Gate Arrays): It offers highest amount of performance as

well as highest logic density, the most features.

Advantages of PLDs :- 1) PLDs offer customer much more flexibility during the design

cycle.

2) PLDs do not require long lead times for prototypes or production parts because PLDs

are already on a distributors shelf and ready for shipment.

3) PLDs can be reprogrammed even after a piece of equipment is shipped to a customer

Commercial off-the-shelf components(COTs)

1) A Commercial off the Shelf product is one which is used 'asis'.

2) The COTS components itself may be develop around a general purpose or domain

specific processor or an ASICs or a PLDs.

3) The major advantage of using COTS is that they are readily available in the market, are

chip and a developer can cut down his/her development time to a great extent

EMBEDDED SYSTEM COMPONENTS MODULE-3

4) The major drawback of using COTS components in embedded design is that the

manufacturer of the COTS component may withdraw the product or discontinue the

production of the COTS at any time if rapid change in technology occurs.

Advantages of COTS:

1) Ready to use

2) Easy to integrate

3) Reduces development time

Disadvantages of COTS:

1) No operational or manufacturing standard (all proprietary)

2) Vendor or manufacturer may discontinue production of a particular COTS product

SENSORS & ACTUATORS

Sensor

 A Sensor is used for taking Input

 It is a transducer that converts energy from one form to another for any measurement or

control purpose Ex. A Temperature sensor

Actuator

Actuator is used for output. It is a transducer that may be either mechanical or electrical which

converts signals to corresponding physical actions.

LED (Light Emitting Diode)

LED is a p-n junction diode and contains a CATHODE and ANODE For functioning the anode

is connected to +ve end of power supply and cathode is connected to –ve end of power supply.

The maximum current flowing through the LED is limited by connecting a RESISTOR in series

between the power supply and LED as shown in the figure below

There are two ways to interface an LED to a microprocessor/microcontroller:

EMBEDDED SYSTEM COMPONENTS MODULE-3

1. The Anode of LED is connected to the port pin and cathode to Ground : In this approach the

port pin sources the current to the LED when it is at logic high(ie. 1).

2. The Cathode of LED is connected to the port pin and Anode to Vcc : In this approach the port

pin sources the current to the LED when it is at logic high (ie. 1). Here the port pin sinks the current

and the LED is turned ON when the port pin is at Logic low (ie. 0)

7-segment display:

A seven-segment display (SSD), or seven-segment indicator, is a form of electronic display

device for displaying decimal numerals that is an alternative to the more complex dot matrix

displays.Seven-segment displays are widely used in digital clocks, electronic meters, basic

calculators, and other electronic devices that display numerical information.

The seven elements of the display can be lit in different combinations to represent the Arabic

numerals. Often the seven segments are arranged in an oblique (slanted) arrangement, which aids

readability. In most applications, the seven segments are of nearly uniform shape and size (usually

elongated hexagons, though trapezoids and rectangles can also be used), though in the case of

adding machines, the vertical segments are longer and more oddly shaped at the ends in an effort to

further enhance readability.

The numerals 6 and 9 may be represented by two different glyphs on seven-segment displays, with

or without a 'tail'.[2][3] The numeral 7 also has two versions, with or without segment F.[4]

The seven segments are arranged as a rectangle of two vertical segments on each side with one

horizontal segment on the top, middle, and bottom. Additionally, the seventh segment bisects the

rectangle horizontally. There are also fourteen-segment displays and sixteen-segment displays

(for full alphanumerics); however, these have mostly been replaced by dot matrix

https://en.wikipedia.org/wiki/Display_device
https://en.wikipedia.org/wiki/Display_device
https://en.wikipedia.org/wiki/Decimal
https://en.wikipedia.org/wiki/Decimal
https://en.wikipedia.org/wiki/Dot_matrix_display
https://en.wikipedia.org/wiki/Dot_matrix_display
https://en.wikipedia.org/wiki/Digital_clock
https://en.wikipedia.org/wiki/Arabic_numerals
https://en.wikipedia.org/wiki/Arabic_numerals
https://en.wikipedia.org/wiki/Oblique_type
https://en.wikipedia.org/wiki/Hexagon
https://en.wikipedia.org/wiki/Trapezoid
https://en.wikipedia.org/wiki/Rectangle
https://en.wikipedia.org/wiki/Adding_machine
https://en.wikipedia.org/wiki/Seven-segment_display#cite_note-N%C3%BChrmann_1991-2
https://en.wikipedia.org/wiki/Seven-segment_display#cite_note-N%C3%BChrmann_1991-2
https://en.wikipedia.org/wiki/Seven-segment_display#cite_note-Casio_fx-50F_calculator-4
https://en.wikipedia.org/wiki/Fourteen-segment_display
https://en.wikipedia.org/wiki/Sixteen-segment_display
https://en.wikipedia.org/wiki/Sixteen-segment_display
https://en.wikipedia.org/wiki/Sixteen-segment_display
https://en.wiktionary.org/wiki/alphanumeric

EMBEDDED SYSTEM COMPONENTS MODULE-3

displays. Twenty-two segment displays capable of displaying the full ASCII character set[5] were

briefly available in the early 1980s, but did not prove popular.

The segments of a 7-segment display are referred to by the letters A to G, where the optional

decimal point (an "eighth segment", referred to as DP) is used for the display of non- integer

numbers.

Optical coupler:

An optical coupler, also called opto-isolator, optocoupler, opto coupler, photocoupler or optical

isolator, is a passive optical component that can combine or split transmission data (optical power)

from optical fibers. It is an electronic device which is designed to transfer electrical signals by

using light waves in order to provide coupling with electrical isolation between its input and output.

The main purpose of an optocoupler is to prevent rapidly changing voltages or high voltages on

one side of a circuit from distorting transmissions or damaging components on the other side of

the circuit. An optocoupler contains a light source often near an LED which converts electrical

input signal into light, a closed optical channel and a photosensor, which detects incoming light

and either modulates electric current flowing from an external power supply or generates electric

energy directly. The sensor can either be a photoresistor, a silicon-controlled rectifier, a

photodiode, a phototransistor or a triac.

https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/Seven-segment_display#cite_note-5
https://en.wikipedia.org/wiki/Decimal_point
https://en.wikipedia.org/wiki/Decimal_point

EMBEDDED SYSTEM COMPONENTS MODULE-3

Applications for Optocouplers:

Photoresistor-based opto-isolators are the slowest type of optocouplers, but also the most linear

isolators and are used in the audio and music industry. Most opto-isolators available use bipolar

silicon phototransistor sensors and reach medium data transfer speed, which is enough for

applications like electroencephalography. High speed opto-isolators are used in computing and

communications applications. Other industrial applications include photocopiers, industrial

automation, professional light measurement instruments and auto-exposure meters.

Relay :

A relay is an electrically operated switch. Many relays use an electromagnet to mechanically

operate a switch, but other operating principles are also used, such as solid-state relays. Relays are

used where it is necessary to control a circuit by a separate low-power signal, or where several

circuits must be controlled by one signal. The first relays were used in long distance

telegraphcircuits as amplifiers: they repeated the signal coming in from one circuit and re-

transmitted it on another circuit. Relays were used extensively in telephone exchanges and early

computers to perform logical operations. A type of relay that can handle the high power required

https://en.wikipedia.org/wiki/Electric
https://en.wikipedia.org/wiki/Switch
https://en.wikipedia.org/wiki/Electromagnet
https://en.wikipedia.org/wiki/Solid-state_relay
https://en.wikipedia.org/wiki/Electrical_telegraph

EMBEDDED SYSTEM COMPONENTS MODULE-3

to directly control an electric motor or other loads is called a contactor. Solid-state relays control

power circuits with no moving parts, instead using a semiconductor device to perform switching.

Relays with calibrated operating characteristics and sometimes multiple operating coils are used

to protect electrical circuits from overload or faults; in modern electric power systems these

functions are performed by digital instruments still called "protective relays".

Magnetic latching relays require one pulse of coil power to move their contacts in one direction,

and another, redirected pulse to move them back. Repeated pulses from the same input have no

effect. Magnetic latching relays are useful in applications where interrupted power should not be

able to transition the contacts.

Magnetic latching relays can have either single or dual coils. On a single coil device, the relay will

operate in one direction when power is applied with one polarity, and will reset when the polarity

is reversed. On a dual coil device, when polarized voltage is applied to the reset coil the contacts

will transition. AC controlled magnetic latch relays have single coils that employ steering diodes

to differentiate between operate and reset commands.

Buzzer :

A buzzer or beeper is an audio signalling device, which may be mechanical, electromechanical,

or piezoelectric (piezo for short). Typical uses of buzzers and beepers include alarm devices,

timers, and confirmation of user input such as a mouse click or keystroke.

Types of Buzzers

https://en.wikipedia.org/wiki/Contactor
https://en.wikipedia.org/wiki/Solid-state_relay
https://en.wikipedia.org/wiki/Moving_parts
https://en.wikipedia.org/wiki/Protective_relay
https://en.wikipedia.org/wiki/Sound
https://en.wikipedia.org/wiki/Machine
https://en.wikipedia.org/wiki/Electromechanics
https://en.wikipedia.org/wiki/Piezoelectricity
https://en.wikipedia.org/wiki/Alarm_devices
https://en.wikipedia.org/wiki/Alarm_devices
https://en.wikipedia.org/wiki/Timer

EMBEDDED SYSTEM COMPONENTS MODULE-3

There are several different kinds of buzzers. At Future Electronics we stock many of the most

common types categorized by Type, Sound Level, Frequency, Rated Voltage, Dimension and

Packaging Type. The parametric filters on our website can help refine your search results

depending on the required specifications.

The most common sizes for Sound Level are 80 dB, 85 dB, 90 dB and 95 dB. We also carry buzzers

with Sound Level up to 105 dB. There are several types available including Electro-Acoustic,

Electromagnetic, Electromechanic, Magnetic and Piezo, among others.

Applications for Buzzers:

Typical uses of buzzers include:

 Alarm devices

 Timers

 Confirmation of user input (ex: mouse click or keystroke)

 Electronic metronomes

 Annunciator panels

 Game shows

 Sporting events

 Household appliances

Push button switch:

A push-button (also spelled pushbutton) or simply button is a simple switch mechanism for

controlling some aspect of a machine or a process. Buttons are typically made out of hard material,

usually plastic or metal.[1] The surface is usually flat or shaped to accommodate the human finger

or hand, so as to be easily depressed or pushed. Buttons are most often biased switches, although

many un-biased buttons (due to their physical nature) still require a spring to return to their un-

pushed state. Terms for the "pushing" of a button include pressing, depressing, mashing, hitting,

and punching. The "push-button" has been utilized in calculators, push-button telephones, kitchen

appliances, and various other mechanical and electronic devices, home and commercial.

https://en.wikipedia.org/wiki/Electrical_switch
https://en.wikipedia.org/wiki/Machine
https://en.wikipedia.org/wiki/Process_(engineering)
https://en.wikipedia.org/wiki/Plastic
https://en.wikipedia.org/wiki/Metal
https://en.wikipedia.org/wiki/Metal
https://en.wikipedia.org/wiki/Switch#Biased_switches
https://en.wikipedia.org/wiki/Spring_(device)
https://en.wikipedia.org/wiki/Calculators
https://en.wikipedia.org/wiki/Push-button_telephone
https://en.wikipedia.org/wiki/Kitchen_appliances
https://en.wikipedia.org/wiki/Kitchen_appliances

EMBEDDED SYSTEM COMPONENTS MODULE-3

In industrial and commercial applications, push buttons can be connected together by a mechanical

linkage so that the act of pushing one button causes the other button to be released. In this way, a

stop button can "force" a start button to be released. This method of linkage is used in simple

manual operations in which the machine or process has no electrical circuits for control.

Red pushbuttons can also have large heads (called mushroom heads) for easy operation and to

facilitate the stopping of a machine. These pushbuttons are called emergency stop buttons and for

increased safety are mandated by the electrical code in many jurisdictions. This large mushroom

shape can also be found in buttons for use with operators who need to wear glovesfor their work

and could not actuate a regular flush-mounted push button.

Communication Interface (onboard and external types):

For any embedded system, the communication interfaces can broadly classified into:

1. Onboard Communication Interfaces :These are used for internal communication of the

embedded system i.e: communication between different components present on the system.

Common examples of onboard interfaces are:

 Inter Integrated Circuit (I2C)

 Serial Peripheral Interface (SPI)

 Universal Asynchronous Receiver Transmitter (UART)

 1-Wire Interface

 Parallel Interface

 Inter Integrated Circuit (I2C)

I2C was originally developed in 1982 by Philips for various Philips chips. The original spec

allowed for only 100kHz communications, and provided only for 7-bit addresses, limiting the

number of devices on the bus to 112 (there are several reserved addresses, which will never be

used for valid I2C addresses). In 1992, the first public specification was published, adding a

400kHz fast-mode as well as an expanded 10-bit address space. Much of the time (for instance, in

the ATMega328 device on many Arduino-compatible boards) , device support for I2C ends at this

https://en.wikipedia.org/wiki/Electrical_circuit
https://en.wikipedia.org/wiki/Emergency_stop
https://en.wikipedia.org/wiki/Glove
https://en.wikipedia.org/w/index.php?title=Flush-mount&action=edit&redlink=1

EMBEDDED SYSTEM COMPONENTS MODULE-3

point. There are three additional modes specified: fast-mode plus, at 1MHz; high-speed mode, at

3.4MHz; and ultra-fast mode, at 5MHz.

Each I2C bus consists of two signals: SCL and SDA. SCL is the clock signal, and SDA is the data

signal. The clock signal is always generated by the current bus master; some slave devices may

force the clock low at times to delay the master sending more data (or to require more time to

prepare data before the master attempts to clock it out). This is called “clock stretching” and is

described on the protocol page.

Unlike UART or SPI connections, the I2C bus drivers are “open drain”, meaning that they can

pull the corresponding signal line low, but cannot drive it high. Thus, there can be no bus

contention where one device is trying to drive the line high while another tries to pull it low,

eliminating the potential for damage to the drivers or excessive power dissipation in the

system.Each signal line has a pull-up resistor on it, to restore the signal to high when no device is

asserting it low.

Serial Data Line (SDA)

The Serial Data Line (SDA) is the data line (of course!). All the data transfer among the devices

takes place through this line.

Serial Clock Line (SCL)

The Serial Clock Line (SCL) is the serial clock (obviously!). I2C is a synchronous protocol, and

hence, SCL is used to synchronize all the devices and the data transfer together. We’ll learn how

it works a little later in this post.

http://en.wikipedia.org/wiki/Open_collector
https://learn.sparkfun.com/tutorials/pull-up-resistors

EMBEDDED SYSTEM COMPONENTS MODULE-3

SPI BUS :

Serial Peripheral Interface, or SPI, is a very common communication protocol used for two-way

communication between two devices. A standard SPI bus consists of 4 signals,

Master Out Slave In (MOSI), Master In Slave Out (MISO), the clock (SCK), and Slave

Select (SS). Unlike an asynchronous serial interface, SPI is not symmetric. An SPI bus has one

master and one or more slaves. The master can talk to any slave on the bus, but each slave can only

talk to the master. Each slave on the bus must have it's own unique slave select signal. The master

uses the slave select signals to select which slave it will be talking to. Since SPI also includes a

clock signal, both devices don't need to agree on a data rate beforehand. The only requirement is

that the clock is lower than the maximum frequency for all devices involved.

Each SPI transfer is full-duplex, meaning that data is sent from the master to the slave and from

the slave to the master at the same time. There is no way for a slave to opt-out of sending data

when the master makes a transfer, however, devices will send dummy bytes (usually all 1's or all

0's) when communication should be one way. If the master is reading data in for a slave, the slave

will know to ignore the data being sent by the master.

Devices that use SPI typically will send/receive multiple bytes each time the SS signal goes low.

This way the SS signal acts as a way to frame a transmission. For example, if you had a flash

memory that had an SPI bus and you want to read some data, the SS signal would go low, the

https://embeddedmicro.com/blogs/tutorials/asynchronous-serial

EMBEDDED SYSTEM COMPONENTS MODULE-3

Advantages of SPI:

 It’s faster than asynchronous serial

 The receive hardware can be a simple shift register

 It supports multiple slaves

Disadvantages of SPI:

 It requires more signal lines (wires) than other communications methods

 The communications must be well-defined in advance (you can’t send random amounts

of data whenever you want)

 The master must control all communications (slaves can’t talk directly to each other)

 It usually requires separate SS lines to each slave, which can be problematic if numerous

slaves are needed.

UART

In UART communication, two UARTs communicate directly with each other. The transmitting

UART converts parallel data from a controlling device like a CPU into serial form, transmits it in

serial to the receiving UART, which then converts the serial data back into parallel data for the

receiving device. Only two wires are needed to transmit data between two UARTs. Data flows

from the Tx pin of the transmitting UART to the Rx pin of the receiving UART:

master would send the command to read memory at a certain address, and as long as the master

kept SS low and toggling SCK the flash memory would keep sending out data. Once SS returned

high the flash memory knows to end the read command.

Since the MISO signal can be connected to multiple devices, each device will only drive the line

when its SS signal is low. This is shown by the grey area.

EMBEDDED SYSTEM COMPONENTS MODULE-3

UARTs transmit data asynchronously, which means there is no clock signal to synchronize the

output of bits from the transmitting UART to the sampling of bits by the receiving UART. Instead

of a clock signal, the transmitting UART adds start and stop bits to the data packet being

transferred. These bits define the beginning and end of the data packet so the receiving UART

knows when to start reading the bits.

When the receiving UART detects a start bit, it starts to read the incoming bits at a specific

frequency known as the baud rate. Baud rate is a measure of the speed of data transfer, expressed

in bits per second (bps). Both UARTs must operate at about the same baud rate. The baud rate

between the transmitting and receiving UARTs can only differ by about 10% before the timing of

bits gets too far off.

1-wire interface:

A 1994 application note explained that the only serial-port interface options for 1-Wire devices

were microcontroller port pins, UARTs, and UART-based COM ports. Since that time special

driver chips have been developed for direct connection to a UART, I²C bus, or USB port.

Meanwhile, the number of 1-Wire devices also grew to a long list.These various developments

made it necessary to update the earlier documentation. Instead of merging the specifics of all

relevant information into a single document, this new document refers the reader to other

application notes whenever possible.

The first 1-Wire devices, the DS199x series, were produced in SRAM technology. Next the

nonvolatile EPROM technology became available, and the DS198x and DS250x series devices

were released. These EPROM devices need a 12V programming pulse and are not erasable. The

next leap forward was EEPROM technology, which allows programming and erasing at 5V or

EMBEDDED SYSTEM COMPONENTS MODULE-3

less. EEPROM technology is found in DS197x, DS243x and DS28Exx series devices. To ensure

proper power, EEPROM devices may need a master that supports "strong pullup", a feature that

temporarily bypasses the 1-Wire pullup resistor with a low-impedance path. The extra power is

needed for write cycles and, in case of the DS1977, also for reading. Besides EEPROM devices,

the strong pullup also powers 1-Wire temperature sensors and special functions such as a SHA-1

engine, which is found in secure 1-Wire devices. Temperature logger iButtons® use SRAM

technology and, therefore, do not have any special, external power requirements.

General Information:

1- Wire is the only voltage-based digital system that works with two contacts, data and ground, for

half-duplex bidirectional communication. A 1-Wire system consists of a single 1-Wire master and

one or more 1-Wire slaves. The 1-Wire concept relies both on a master that initiates digital

communication, and on self-timed 1-Wire slave devices that synchronize to the master's signal.

The timing logic of master and slave must measure and generate digital pulses of various widths.

When idle, a high-impedance path between the 1-Wire bus and the operating voltage puts the 1-

Wire bus in the logic-high state. Each device on the bus must be able to pull the 1-Wire bus low at

the appropriate time by using an open-drain output (wired AND). If a transaction needs to be

suspended for any reason, the bus must be left in the idle state so the transaction can resume.

Parallel port:

EMBEDDED SYSTEM COMPONENTS MODULE-3

A parallel port is a type of interface found on computers (personal and otherwise) for connecting

peripherals. The name refers to the way the data is sent; parallel ports send multiple bits of data at

once, in parallel communication, as opposed to serial interfaces that send bits one at a time. To do

this, parallel ports require multiple data lines in their cables and port connectors, and tend to be

larger than contemporary serial ports which only require one data line.

There are many types of parallel ports, but the term has become most closely associated with the

printer port or Centronics port found on most personal computers from the 1970s through the

2000s. It was an industry de factostandard for many years, and was finally standardized as IEEE

1284 in the late 1990s, which defined the Enhanced Parallel Port (EPP) and Extended Capability

Port (ECP) bi-directional versions. Today, the parallel port interface is virtually non-existent

because of the rise of Universal Serial Bus (USB) devices, along with network printing using

Ethernet and Wi-Fi connected printers.

The parallel port interface was originally known as the Parallel Printer Adapter on IBM PC-

compatible computers. It was primarily designed to operate printers that used IBM's eight- bit

extended ASCII character set to print text, but could also be used to adapt other peripherals.

Graphical printers, along with a host of other devices, have been designed to communicate with

the system.

External communication interface:

In telecommunications, RS-232, Recommended Standard 232[1] is a standard introduced in

1960[2] for serial communicationtransmission of data. It formally defines the signals connecting

between a DTE (data terminal equipment) such as a computer terminal, and a DCE (data circuit-

terminating equipment or data communication equipment), such as a modem. The RS-232 standard

had been commonly used in computer serial ports. The standard defines the electrical

characteristics and timing of signals, the meaning of signals, and the physical size and pinout of

connectors. The current version of the standard is TIA-232-F Interface Between Data Terminal

Equipment and Data Circuit-Terminating Equipment Employing Serial Binary Data Interchange,

issued in 1997.

An RS-232 serial port was once a standard feature of a personal computer, used for connections to

modems, printers, mice, data storage, uninterruptible power supplies, and other peripheral devices.

RS-232, when compared to later interfaces such as RS-422, RS-485 and Ethernet, has

https://en.wikipedia.org/wiki/Hardware_interface
https://en.wikipedia.org/wiki/Computers
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Parallel_communication
https://en.wikipedia.org/wiki/Serial_interface
https://en.wikipedia.org/wiki/Parallel_port#Centronics
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/De_facto_standard
https://en.wikipedia.org/wiki/IEEE_1284
https://en.wikipedia.org/wiki/IEEE_1284
https://en.wikipedia.org/wiki/Enhanced_Parallel_Port
https://en.wikipedia.org/wiki/Extended_Capability_Port
https://en.wikipedia.org/wiki/Extended_Capability_Port
https://en.wikipedia.org/wiki/Universal_Serial_Bus
https://en.wikipedia.org/wiki/Ethernet
https://en.wikipedia.org/wiki/Wi-Fi
https://en.wikipedia.org/wiki/PC_compatible
https://en.wikipedia.org/wiki/PC_compatible
https://en.wikipedia.org/wiki/PC_compatible
https://en.wikipedia.org/wiki/Dot_matrix_printing#Personal_computers
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/Extended_ASCII
https://en.wikipedia.org/wiki/Extended_ASCII
https://en.wikipedia.org/wiki/Telecommunications
https://en.wikipedia.org/wiki/Recommended_Standard_(EIA)
https://en.wikipedia.org/wiki/RS-232#cite_note-Metering_Glossary-1
https://en.wikipedia.org/wiki/Technical_standard
https://en.wikipedia.org/wiki/RS-232#cite_note-CAM_1974-2
https://en.wikipedia.org/wiki/Serial_communication
https://en.wikipedia.org/wiki/Data_terminal_equipment
https://en.wikipedia.org/wiki/Computer_terminal
https://en.wikipedia.org/wiki/Data_circuit-terminating_equipment
https://en.wikipedia.org/wiki/Data_circuit-terminating_equipment
https://en.wikipedia.org/wiki/Data_communication_equipment
https://en.wikipedia.org/wiki/Modem
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Pinout
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/Modem
https://en.wikipedia.org/wiki/Printer_(computing)
https://en.wikipedia.org/wiki/Mouse_(computing)
https://en.wikipedia.org/wiki/Uninterruptible_power_supplies
https://en.wikipedia.org/wiki/RS-422
https://en.wikipedia.org/wiki/RS-485
https://en.wikipedia.org/wiki/Ethernet

EMBEDDED SYSTEM COMPONENTS MODULE-3

lower transmission speed, short maximum cable length, large voltage swing, large standard

connectors, no multipoint capability and limited multidrop capability. In modern personal

computers, USBhas displaced RS-232 from most of its peripheral interface roles. Many computers

no longer come equipped with RS-232 ports (although some motherboards come equipped with a

COM port header that allows the user to install a bracket with a DE-9 port) and must use either an

external USB-to-RS-232 converter or an internal expansion card with one or more serial ports to

connect to RS-232 peripherals. Nevertheless, thanks to their simplicity and past ubiquity, RS-232

interfaces are still used—particularly in industrial machines, networking equipment, and scientific

instruments where a short-range, point-to-point, low-speed wired data connection is adequate.

USB:

USB, short for Universal Serial Bus, is a standard type of connection for many different kinds of

devices. Generally, USB refers to the types of cables and connectors used to connect these many

types of external devices to computers.

More About USB

The Universal Serial Bus standard has been extremely successful. USB ports and cables are used

to connect hardware such as printers, scanners, keyboards, mice, flash drives, external hard drives,

joysticks, cameras, and more to computers of all kinds, including desktops, tablets, laptops,

netbooks, etc.

https://en.wikipedia.org/wiki/Universal_Serial_Bus
https://en.wikipedia.org/wiki/Motherboard
https://www.lifewire.com/what-is-a-keyboard-2618153
https://www.lifewire.com/what-is-a-mouse-2618156
https://www.lifewire.com/what-is-a-flash-drive-2625794
https://www.lifewire.com/what-is-a-hard-disk-drive-2618152
https://www.lifewire.com/what-is-a-tablet-4157433

EMBEDDED SYSTEM COMPONENTS MODULE-3

In fact, USB has become so common that you'll find the connection available on nearly any

computer-like device such as video game consoles, home audio/visual equipment, and even in

many automobiles.

Many portable devices, like smartphones, ebook readers, and small tablets, use USB primarily for

charging. USB charging has become so common that it's now easy to find replacement electrical

outlets at home improvement stores with USB ports built it, negating the need for a USB power

adapter.

USB Versions

There have been three major USB standards, 3.1 being the newest:

 USB 3.1: Called Superspeed+, USB 3.1 compliant devices are able to transfer data at 10

Gbps (10,240 Mbps).

 USB 3.0: Called SuperSpeed USB, USB 3.0 compliant hardware can reach a maximum

transmission rate of 5 Gbps (5,120 Mbps).

 USB 2.0: Called High-Speed USB, USB 2.0 compliant devices can reach a maximum

transmission rate of 480 Mbps.

 USB 1.1: Called Full Speed USB, USB 1.1 devices can reach a maximum transmission rate

of 12 Mbps.

Most USB devices and cables today adhere to USB 2.0, and a growing number to USB 3.0.

Important: The parts of a USB-connected system, including the host (like a computer), the cable,

and the device, can all support different USB standards so long as they are physically compatible.

However, all parts must support the same standard if you want it to achieve the maximum data rate

possible.

https://www.lifewire.com/what-is-usb-3-0-2626038
https://www.lifewire.com/what-is-usb-2-0-2626037
https://www.lifewire.com/what-is-usb-1-1-2626036

EMBEDDED SYSTEM COMPONENTS MODULE-3

IEEE1394:

IEEE 1394, High Performance Serial Bus, is an electronics standard for connecting devices to your

personal computer. IEEE 1394 provides a single plug-and-socket connection on which up to 63

devices can be attached with data transfer speeds up to 400 Mbps (megabit s per second). The

standard describes a serial bus or pathway between one or more peripheral devices and your

computer's microprocessor . Many peripheral devices now come equipped to meet IEEE 1394.

Two popular implementations of IEEE 1394 are Apple's FireWire and Sony's i.LINK . IEEE 1394

implementations provide:

 A simple common plug-in serial connector on the back of your computer and on many different

types of peripheral devices

 A thin serial cable rather than the thicker parallel cable you now use to your printer, for example

 A very high-speed rate of data transfer that will accommodate multimedia applications (100

and 200 megabits per second today; with much higher rates later)

 Hot-plug and plug and play capability without disrupting your computer

 The ability to chain devices together in a number of different ways without terminators or

complicated set-up requirements

https://searchnetworking.techtarget.com/definition/Mbps
https://whatis.techtarget.com/definition/megabit
https://whatis.techtarget.com/definition/serial
https://whatis.techtarget.com/definition/serial
https://whatis.techtarget.com/definition/microprocessor-logic-chip
https://searchnetworking.techtarget.com/definition/FireWire
https://whatis.techtarget.com/definition/iLINK
https://searchwindowsserver.techtarget.com/definition/Plug-and-Play-PnP

EMBEDDED SYSTEM COMPONENTS MODULE-3

Working

There are two levels of interface in IEEE 1394, one for the backplane bus within the computer and

another for the point-to-point interface between device and computer on the serial cable. A simple

bridge connects the two environments. The backplane bus supports 12.5, 25, or 50 megabits per

second data transfer. The cable interface supports 100, 200, or 400 megabits per second. Each of

these interfaces can handle any of the possible data rates and change from one to another as needed.

IrDA

 IrDA (Infrared Data Association)

 Bluetooth 2.4 GHz

 802.11 WLAN and 802.11b WiFi

 ZigBee 900 MHz

 Used in mobile phones, digital cameras, keyboard, mouse, printers to communicate to

laptop computer and for data and pictures download and synchronization.

 Used for control TV, air-conditioning, LCD projector, VCD devices from a distance

 Use infrared (IR) after suitable modulation of the data bits.

 Communicates over a line of sight Phototransistor receiver for infrared rays

IrDA protocol suite

 Supports data transfer rates of up to 4 Mbps

 Supports bi-directional serial communication over viewing angle between ± 15 ° and

distance of nearly 1 m At 5 m, the IR transfer data can be up to data transfer rates of 75

kbps

 Should be no obstructions or wall in between the source and receiver

Bluetooth

Bluetooth is a wireless technology standard for exchanging data over short distances (using short-

wavelength UHF radio waves in the ISM band from 2.4 to 2.485 GHz) from fixed and mobile

devices, and building personal area networks(PANs). Invented by telecom vendor Ericsson in

1994, it was originally conceived as a wireless alternative to RS-232data cables.

https://whatis.techtarget.com/definition/backplane
https://en.wikipedia.org/wiki/Wireless
https://en.wikipedia.org/wiki/UHF
https://en.wikipedia.org/wiki/UHF
https://en.wikipedia.org/wiki/ISM_band
https://en.wikipedia.org/wiki/Personal_area_network
https://en.wikipedia.org/wiki/Ericsson
https://en.wikipedia.org/wiki/RS-232

EMBEDDED SYSTEM COMPONENTS MODULE-3

Bluetooth is managed by the Bluetooth Special Interest Group (SIG), which has more than 30,000

member companies in the areas of telecommunication, computing, networking, and consumer

electronics.[5] The IEEE standardized Bluetooth as IEEE 802.15.1, but no longer maintains the

standard. The Bluetooth SIG oversees development of the specification, manages the qualification

program, and protects the trademarks.[6] A manufacturer must meet Bluetooth SIG standards to

market it as a Bluetooth device.

Bluetooth operates at frequencies between 2402 and 2480 MHz, or 2400 and 2483.5 MHz

including guard bands 2 MHz wide at the bottom end and 3.5 MHz wide at the top.[15] This is in

the globally unlicensed (but not unregulated) industrial, scientific and medical (ISM) 2.4 GHz

short-range radio frequency band. Bluetooth uses a radio technology called frequency-hopping

spread spectrum. Bluetooth divides transmitted data into packets, and transmits each packet on one

of 79 designated Bluetooth channels. Each channel has a bandwidth of 1 MHz. It usually performs

800 hops per second, with Adaptive Frequency-Hopping (AFH) enabled. Bluetooth Low Energy

uses 2 MHz spacing, which accommodates 40 channels.

Originally, Gaussian frequency-shift keying (GFSK) modulation was the only modulation scheme

available. Since the introduction of Bluetooth 2.0+EDR, π/4-DQPSK(differential quadrature phase

shift keying) and 8DPSK modulation may also be used between compatible devices. Devices

functioning with GFSK are said to be operating in basic rate (BR) mode where an instantaneous bit

rate of 1 Mbit/s is possible. The term Enhanced Data Rate (EDR) is used to describe π/4-DPSK

and 8DPSK schemes, each giving 2 and 3 Mbit/s respectively. The combination of these (BR and

EDR) modes in Bluetooth radio technology is classified as a "BR/EDR radio".

Wifi :

Wi-Fi is a technology for wireless local area networking with devices based on the IEEE

802.11standards. Wi-Fi is a trademark of the Wi-Fi Alliance, which restricts the use of the term

Wi-Fi Certified to products that successfully complete interoperability certification testing.

Devices that can use Wi-Fi technology include personal computers, video-game consoles,

phones and tablets, digital cameras, smart TVs, digital audio players and modern printers. Wi-Fi

compatible devices can connect to the Internet via a WLAN and a wireless access point. Such an

access point (or hotspot) has a range of about 20 meters (66 feet) indoors and a

https://en.wikipedia.org/wiki/Bluetooth_Special_Interest_Group
https://en.wikipedia.org/wiki/Bluetooth#cite_note-autogenerated1-5
https://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers
https://en.wikipedia.org/wiki/Bluetooth#cite_note-6
https://en.wikipedia.org/wiki/Bluetooth_Special_Interest_Group#Qualification
https://en.wikipedia.org/wiki/Guard_band
https://en.wikipedia.org/wiki/Bluetooth#cite_note-Radio-Electronics.com-15
https://en.wikipedia.org/wiki/ISM_band
https://en.wikipedia.org/wiki/Frequency-hopping_spread_spectrum
https://en.wikipedia.org/wiki/Frequency-hopping_spread_spectrum
https://en.wikipedia.org/wiki/Adaptive_frequency-hopping_spread_spectrum
https://en.wikipedia.org/wiki/Bluetooth_Low_Energy
https://en.wikipedia.org/wiki/Bluetooth_Low_Energy
https://en.wikipedia.org/wiki/Bluetooth_Low_Energy
https://en.wikipedia.org/wiki/Gaussian_frequency-shift_keying
https://en.wikipedia.org/wiki/DQPSK
https://en.wikipedia.org/wiki/Bit_rate
https://en.wikipedia.org/wiki/Bit_rate
https://en.wikipedia.org/wiki/Data_rate_units
https://en.wikipedia.org/wiki/Wireless_LAN
https://en.wikipedia.org/wiki/IEEE_802.11
https://en.wikipedia.org/wiki/IEEE_802.11
https://en.wikipedia.org/wiki/Wi-Fi_Alliance
https://en.wikipedia.org/wiki/Interoperability
https://en.wikipedia.org/wiki/Smartphone
https://en.wikipedia.org/wiki/Smartphone
https://en.wikipedia.org/wiki/Tablet_computer
https://en.wikipedia.org/wiki/Smart_TV
https://en.wikipedia.org/wiki/Wireless_access_point
https://en.wikipedia.org/wiki/Wireless_access_point
https://en.wikipedia.org/wiki/Hotspot_(Wi-Fi)

EMBEDDED SYSTEM COMPONENTS MODULE-3

greater range outdoors. Hotspot coverage can be as small as a single room with walls that block

radio waves, or as large as many square kilometres achieved by using multiple overlapping access

points.

Wi-Fi most commonly uses the 2.4 gigahertz (12 cm) UHF and 5.8 gigahertz (5

cm) SHF ISM radio bands. Anyone within range with a wireless modem can attempt to access the

network; because of this, Wi-Fi is more vulnerable to attack (called eavesdropping) than wired

networks. Wi-Fi Protected Access is a family of technologies created to protect information

moving across Wi-Fi networks and includes solutions for personal and enterprise networks.

Security features of Wi-Fi Protected Access constantly evolve to include stronger protections and

new security practices as the security landscape change.

Zigbee :

Zigbee is an IEEE 802.15.4-based specification for a suite of high-level communication protocols

used to create personal area networks with small, low-power digital radios, such as for home

automation, medical device data collection, and other low-power low-bandwidth needs, designed

for small scale projects which need wireless connection. Hence, Zigbee is a low-power, low data

rate, and close proximity (i.e., personal area) wireless ad hoc network.

The technology defined by the Zigbee specification is intended to be simpler and less expensive

than other wireless personal area networks (WPANs), such as Bluetooth or more general wireless

networking such as Wi-Fi. Applications include wireless light switches, home energy monitors,

traffic management systems, and other consumer and industrial equipment that requires short-

range low-rate wireless data transfer.

Its low power consumption limits transmission distances to 10–100 meters line-of-sight,

depending on power output and environmental characteristics. Zigbee devices can transmit data

https://en.wikipedia.org/wiki/UHF
https://en.wikipedia.org/wiki/Super_high_frequency
https://en.wikipedia.org/wiki/Super_high_frequency
https://en.wikipedia.org/wiki/Wireless_modem
https://en.wikipedia.org/wiki/Eavesdropping
https://en.wikipedia.org/wiki/IEEE_802.15.4
https://en.wikipedia.org/wiki/Specification_(technical_standard)
https://en.wikipedia.org/wiki/Personal_area_network
https://en.wikipedia.org/wiki/Digital_radio
https://en.wikipedia.org/wiki/Wireless_ad_hoc_network
https://en.wikipedia.org/wiki/Wireless_personal_area_network
https://en.wikipedia.org/wiki/Bluetooth
https://en.wikipedia.org/wiki/Wi-Fi
https://en.wikipedia.org/wiki/Home_energy_monitor
https://en.wikipedia.org/wiki/Line-of-sight_propagation

EMBEDDED SYSTEM COMPONENTS MODULE-3

over long distances by passing data through a mesh network of intermediate devices to reach more

distant ones. Zigbee is typically used in low data rate applications that require long battery life and

secure networking (Zigbee networks are secured by 128 bit symmetric encryption keys.) Zigbee

has a defined rate of 250 kbit/s, best suited for intermittent data transmissions from a sensor or

input device.

Zigbee was conceived in 1998, standardized in 2003, and revised in 2006. The name refers to the

waggle dance of honey bees after their return to the beehive.

Typical application areas include:

 Home Entertainment and Control—Home automation such as in QIVICON,[11] smart

lighting,[12] advanced temperature control, safety and security, movies and music

 Wireless sensor networks—Starting with individual sensors like Telosb/Tmote and Iris from

Memsic

 Industrial control

 Embedded sensing

 Medical data collection

 Smoke and intruder warning

 Building automation

 Remote wireless microphone configuration, in Shure Wireless Microphone Systems [13]

General Packet Radio Service:

GPRS is a packet oriented mobile data service on the 2G and 3G cellular communication

system's global system for mobile communications (GSM). GPRS was originally standardized

by European Telecommunications Standards Institute (ETSI) in response to the earlier CDPD

and i-modepacket-switched cellular technologies. It is now maintained by the 3rd Generation

Partnership Project (3GPP).

GPRS usage is typically charged based on volume of data transferred, contrasting with circuit

switched data, which is usually billed per minute of connection time. Sometimes billing time

is broken down to every third of a minute. Usage above the bundle cap is charged per

megabyte, speed limited, or disallowed.

https://en.wikipedia.org/wiki/Mesh_networking
https://en.wikipedia.org/wiki/Symmetric-key_algorithm
https://en.wikipedia.org/wiki/Waggle_dance
https://en.wikipedia.org/wiki/Home_automation
https://en.wikipedia.org/wiki/QIVICON
https://en.wikipedia.org/wiki/QIVICON
https://en.wikipedia.org/wiki/Zigbee#cite_note-12
https://en.wikipedia.org/wiki/Wireless_sensor_networks
https://en.wikipedia.org/wiki/Industrial_control_system
https://en.wikipedia.org/wiki/Building_automation
https://en.wikipedia.org/wiki/Shure#Wireless_microphone_systems
https://en.wikipedia.org/wiki/Shure#Wireless_microphone_systems
https://en.wikipedia.org/wiki/Packet_oriented
https://en.wikipedia.org/wiki/Packet_oriented
https://en.wikipedia.org/wiki/2G
https://en.wikipedia.org/wiki/3G
https://en.wikipedia.org/wiki/3G
https://en.wikipedia.org/wiki/Cellular_communication
https://en.wikipedia.org/wiki/Cellular_communication
https://en.wikipedia.org/wiki/Global_System_for_Mobile_Communications
https://en.wikipedia.org/wiki/European_Telecommunications_Standards_Institute
https://en.wikipedia.org/wiki/CDPD
https://en.wikipedia.org/wiki/CDPD
https://en.wikipedia.org/wiki/I-mode
https://en.wikipedia.org/wiki/3rd_Generation_Partnership_Project
https://en.wikipedia.org/wiki/3rd_Generation_Partnership_Project
https://en.wikipedia.org/wiki/Circuit_switching
https://en.wikipedia.org/wiki/Circuit_switching
https://en.wikipedia.org/wiki/Product_bundling

EMBEDDED SYSTEM COMPONENTS MODULE-3

GPRS is a best-effort service, implying variable throughput and latency that depend on the

number of other users sharing the service concurrently, as opposed to circuit switching, where

a certain quality of service (QoS) is guaranteed during the connection. In 2G systems, GPRS

provides data rates of 56–114 kbit/second.[2G cellular technology combined with GPRS is

sometimes described as 2.5G, that is, a technology between the second (2G) and third (3G)

generations of mobile telephony. It provides moderate-speed data transfer, by using unused

time division multiple access (TDMA) channels in, for example, the GSM system. GPRS is

integrated into GSM Release 97 and newer releases.

MEMORIES

There are different types of memories available to be used in computers as well as embedded

system. This chapter guides the reader through the different types of memories that are available

and can be used and tries to explain their differences in simple words.

TYPES OF MEMORY

There are three main types of memories, they are

a) RAM (Random Access Memory) It is read write memory.

 Data at any memory location can be read or written.

 It is volatile memory, i.e. retains the contents as long as electricity is supplied.

 Data access to RAM is very fast

b) ROM (Read Only Memory) It is read only memory.

 Data at any memory location can be only read.

 It is non-volatile memory, i.e. the contents are retained even after electricity is switched off

and available after it is switched on. Data access to ROM is slow compared to RAM.

c) HYBRID It is combination of RAM as well as ROM

 It has certain features of RAM and some of ROM

 Like RAM the contents to hybrid memory can be read and written Like ROM the contents

of hybrid memory are non volatile

https://en.wikipedia.org/wiki/Best-effort
https://en.wikipedia.org/wiki/Throughput
https://en.wikipedia.org/wiki/Latency_(engineering)
https://en.wikipedia.org/wiki/Circuit_switching
https://en.wikipedia.org/wiki/Quality_of_service
https://en.wikipedia.org/wiki/2G
https://en.wikipedia.org/wiki/2.5G
https://en.wikipedia.org/wiki/2G
https://en.wikipedia.org/wiki/3G
https://en.wikipedia.org/wiki/Time_division_multiple_access

EMBEDDED SYSTEM COMPONENTS MODULE-3

 The following figure gives a classification of different types of memory

TYPES OF RAM

There are 2 important memory device in the RAM family.

a) SRAM (Static RAM)

b) DRAM (Dynamic RAM)

SRAM (Static RAM)

 It retains the content as long as the power is applied to the chip.

 If the power is turned off then its contents will be lost forever.

DRAM (Dynamic RAM)

 DRAM has extremely short Data lifetime(usually less than a quarter of second).

This is true even when power is applied constantly.

 b) A DRAM controller is used to make DRAM behave more like SRAM.

 c) The DRAM controller periodically refreshes the data stored in the DRAM. By

refreshing the data several times a second, the DRAM controller keeps the contents

of memory alive for a long time.

EMBEDDED SYSTEM COMPONENTS MODULE-3

TYPES OF ROM

There are three types of ROM described as follows:

Masked ROM

a. These are hardwired memory devices found on system. b. It contains pre-programmed

set of instruction and data and it cannot be modified or appended in any way.

b. (it is just like an Audio CD that contains songs pre-written on it and does not allow to

write any other data)

c. The main advantage of masked ROM is low cost of production.

PROM (PROGRAMMABLE ROM)

a) This memory device comes in an un-programmed state i.e. at the time of purchased it is

in an un-programmed state and it allows the user to write his/her own program or code into

this ROM.

b) In the un-programmed state the data is entirely made up of 1’s. c) PROMs are also

known as one-time-programmable (OTP) device because any data can be written on it only

once. If the data on the chip has some error and needs to be modified this memory chip has

to be discarded and the modified data has to be written to another new PROM.

EPROM (ERASABLE-AND-PROGRAMABLE ROM)

a) It is same as PROM and is programmed in same manner as a PROM.

b) It can be erased and reprogrammed repeatedly as the name suggests.

c) The erase operation in case of an EPROM is performed by exposing the chip to a source

of ultraviolet light.

d) The reprogramming ability makes EPROM as essential part of software development

and testing process.

EMBEDDED SYSTEM COMPONENTS MODULE-3

TYPES OF HYBRID MEMORY

There are three types of Hybrid memory devices: EEPROMs

a. EEPROMs stand for Electrically Erasable and Programmable ROM.

b. It is same as EPROM, but the erase operation is performed electrically.

c. Any byte in EEPROM can be erased and rewritten as desired

Flash

a. Flash memory is the most recent advancement in memory technology.

b. Flash memory devices are high density, low cost, nonvolatile, fast (to read, but not to

write), and electrically reprogrammable.

c. Flash is much more popular than EEPROM and is rapidly displacing many of the ROM

devices.

d. Flash devices can be erased only one sector at a time, not byte by byte.

NVRAM

a. NVRAM is usually just a SRAM with battery backup.

b. When power is turned on, the NVRAM operates just like any other SRAM but when

power is off, the NVRAM draws enough electrical power from the battery to retain its

content.

c. NVRAM is fairly common in embedded systems.

d. It is more expensive than SRAM.

DIRECT MEMORY ACCESS (DMA)

DMA is a technique for transferring blocks of data directly between two hardware

devices. In the absence of DMA the processor must read the data from one device and write

it to the other one byte or word at a time. DMA Absence Disadvantage: If the amount of data

to be transferred is large or frequency of transfer is high the rest of the software might never

get a chance to run.

EMBEDDED SYSTEM COMPONENTS MODULE-3

DMA Presence Advantage: The DMA Controller performs entire transfer with little help

from the Processor. Working of DMA The Processor provides the DMA Controller with

source and destination address & total number of bytes of the block of data which needs

transfer. After copying each byte each address is incremented & remaining bytes are

reduced by one. When number of bytes reaches zeros the block transfer ends & DMA

Controller sends an Interrupt to Processor.

EMBEDDED FIRMWARE

Embedded firmware is the flash memory chip that stores specialized software running in a chip in

an embedded device to control its functions.

Firmware in embedded systems fills the same purpose as a ROM but can be updated more easily

for better adaptability to conditions or interconnecting with additional equipment.

Hardware makers use embedded firmware to control the functions of various hardware devices

and systems much like a computer’s operating system controls the function of software

applications. Embedded firmware exists in everything from appliances so simple you might not

imagine they had computer control, like toasters, to complex tracking systems in missiles. The

toaster would likely never need updating but the tracking system sometimes does. As the

complexity of a device increases, it often makes sense to use firmware in case of design errors that

an update might correct.

Embedded firmware is used to control the limited, set functions of hardware devices and systems

of greater complexity but still gives more appliance-like usage instead of a series of terminal

commands. Embedded firmware functions are activated by external controls or external actions of

the hardware. Embedded firmware and ROM-based embedded software often have

communication links to other devices for functionality or to address the need for the device to be

adjusted, calibrated or diagnosed or to output log files. It is also through these connections that

someone might attempt embedded device hacking.

Embedded software varies in complexity as much the devices it is used to control. Although

embedded software and embedded firmware are sometimes used synonymously, they

https://internetofthingsagenda.techtarget.com/definition/embedded-software
https://whatis.techtarget.com/definition/embedded-device
https://whatis.techtarget.com/definition/firmware
https://internetofthingsagenda.techtarget.com/definition/embedded-software
https://internetofthingsagenda.techtarget.com/definition/embedded-device-hacking

EMBEDDED SYSTEM COMPONENTS MODULE-3

are not exactly the same thing. For example, embedded software may run on ROM chips. Also,

embedded software is often the only computer code running on a piece of hardware while firmware

can also refer to the chip that houses a computer’s EFI or BIOS, which hands over control to an

OS that in turn launches and controls programs.

Other components :

Reset circuit:

Microprocessors are complex, state-driven devices that must start up in a consistent way to

function properly. You can establish proper processor operation by supplying a reset input

that is normally asserted until the system is ready to execute the boot-up firmware. When the

reset signal is deasserted, some subset of the processor's registers (depending on the specific

chip) will be initialized to default values and the processor will start executing from fixed

location (also specific to the chip). It's crucial to design this reset circuit properly to avoid

system lockup, erratic processor operation, and possible corruption of your nonvolatile

memory.

This is all complex enough that many companies now offer integrated circuit reset devices,

commonly referred to as "reset supervisors." Good design practice suggests using these reset

supervisors for most embedded systems because designing discrete reset circuitry is beyond

the expertise of many embedded systems engineers. My personal experience has led me to

rely on reset supervisors exclusively and ignore the various RC, transistor, and diode networks

that are scattered throughout data books and shown in "example" circuits.

EMBEDDED SYSTEM COMPONENTS MODULE-3

Brownout Protection

Brownout protection inbuilt in them but when connecting a controller to an industry sensor and

controlling devices(which are extremely costly) its better we know what is a brownout and how is

it detected in a microcontroller cause many devices in low to medium scale industry may not be

as immune to brownout as our controller. The brown out can cause one of the three things for a dc

supply system. These things in turn can damage the connected embedded systems.

1. An unregulated direct current supply will produce a lower output voltage for

electronic circuits. The output ripple voltage will decrease in line with the usually reduced

load current.

2. A linear direct current regulated supply will maintain the output voltage unless the

brownout is severe and the input voltage drops below the drop out voltage for the regulator,

at which point the output voltage will fall and high levels of ripple from the

rectifier/reservoir capacitor will appear on the output.

3. A switched-mode power supply which has a regulated output will be affected. As

the input voltage falls, the current draw will increase to maintain the same output voltage

and current, until such a point that the power supply malfunctions.

EMBEDDED SYSTEM COMPONENTS MODULE-3

Oscillator circuit :

The majority of clock sources for microcontrollers can be grouped into two types: those

based on mechanical resonant devices, such as crystals and ceramic resonators, and those

based on electrical phase-shift circuits such as RC (resistor, capacitor) oscillators. Silicon

oscillators are typically a fully integrated version of the RC oscillator with the added

benefits of current sources, matched resistors and capacitors, and temperature-

compensation circuits for increased stability.

These modules contain all oscillator circuit components and provide a clock signal as a

low-impedance square-wave output. Operation is guaranteed over a range of conditions.

Crystal oscillator modules and fully integrated silicon oscillators are most common. Crystal

oscillator modules provide accuracy similar to discrete component circuits using crystals.

Silicon oscillators are more precise than discrete component RC oscillator circuits, and

many provide comparable accuracy to ceramic resonator-based oscillators.

EMBEDDED SYSTEM COMPONENTS MODULE-3

RTC

A real-time clock (RTC) is a computer clock (most often in the form of an integrated circuit) that

keeps track of the current time.

Although the term often refers to the devices in personal computers, servers and embedded

systems, RTCs are present in almost any electronic device which needs to keep accurate time. A

common RTC used in single-board computers is the DS1307.

Although keeping time can be done without an RTC,[1] using one has benefits:

 Low power consumption[2] (important when running from alternate power)

 Frees the main system for time-critical tasks

 Sometimes more accurate than other methods

RTCs are widely used in many different devices which need accurate time keeping.

 Real-time clocks normally have batteries attached to them that have very long life.

 Therefore, the batteries last a very long time, several years. The battery keeps the RTC

operating, even when there is no power to the microcontroller that is connected up to. So

even if the microcontroller powers off, the RTC can keep operating due to its battery.

Therefore, it can always keep track of the current time and have accurate time, ongoing.

An RTC maintains its clock by counting the cycles of an oscillator – usually an external 32.768kHz

crystal oscillator circuit, an internal capacitor based oscillator, or even an embedded quartz crystal.

Some can detect transitions and count the periodicity of an input that may be connected.

This can enable an RTC to sense the 50/60Hz ripple on a mains power supply, or detect and

accumulate transitions coming from a GPS unit epoch tick. An RTC that does this operates like a

phase locked loop (PLL), shifting its internal clock reference to ‘lock’ it onto the external signal.

If the RTC loses its external reference, it can detect this event (as its PLL goes out of lock) and

free run from its internal oscillator.

https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Time
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Single-board_computer
https://en.wikipedia.org/wiki/Real-time_clock#cite_note-1
https://en.wikipedia.org/wiki/Real-time_clock#cite_note-2

EMBEDDED SYSTEM COMPONENTS MODULE-3

A watchdog timer (WDT):

WDT is a hardware timer that automatically generates a system reset if the main program

neglects to periodically service it. It is often used to automatically reset an embedded device

that hangs because of a software or hardware fault. Some systems may also refer to it as a

computer operating properly (COP) timer. Many microcontrollers including the embedded

processor have watchdog timer hardware.

The main program typically has a loop that it constantly goes through performing various

functions. The watchdog timer is loaded with an initial value greater than the worst case time

delay through the main program loop. Each time it goes through the main loop the code resets

the watchdog timer (sometimes called “kicking” or “feeding” the dog). If a fault occurs and the

main program does not get back to reset the timer before it counts down, an interrupt is

generated to reset the processor. Used in this way, the watchdog timer can detect a fault on an

unattended embedded device and attempt corrective action with a reset. Typically after reset, a

register can also be read to determine if the watchdog timer generated the reset or if it was a

normal reset. On the mbed this register is called the Reset Source Identification Register

(RSID).

EMBEDDED SYSTEM COMPONENTS MODULE-3

EMBEDDED SYSTEM DESIGN CONCEPTS MODULE-4

EMBEDDED SYSTEM DESIGN CONCEPTS

Characteristics & Quality Attributes of Embedded Systems

The characteristics of embedded system are different from those of a general purpose computer and so

are its Quality metrics. This chapter gives a brief introduction on the characteristics of an embedded

system and the attributes that are associated with its quality.

CHARACTERISTICS OF EMBEDDED SYSTEM

Following are some of the characteristics of an embedded system that make it different from a

general purpose computer:

1. Application and Domain specific

 An embedded system is designed for a specific purpose only. It will not do any other task.

 Ex. A washing machine can only wash, it cannot cook

 Certain embedded systems are specific to a domain: ex. A hearing aid is an application that

belongs to the domain of signal processing.

2. Reactive and Real time

 Certain Embedded systems are designed to react to the events that occur in the nearby

environment. These events also occur real-time.

 Ex. An air conditioner adjusts its mechanical parts as soon as it gets a signal from its sensors

to increase or decrease the temperature when the user operates it using a remote control.

 An embedded system uses Sensors to take inputs and has actuators to bring out the required

functionality.

3. Operation in harsh environment

 Certain embedded systems are designed to operate in harsh environments like very high

temperature of the deserts or very low temperature of the mountains or extreme rains.

 These embedded systems have to be capable of sustaining the environmental conditions it

is designed to operate in.

EMBEDDED SYSTEM DESIGN CONCEPTS MODULE-4

4. Distributed systems

 Certain embedded systems are part of a larger system and thus form components of a

distributed system.

 These components are independent of each other but have to work together for the larger

system to function properly.

 Ex. A car has many embedded systems controlled to its dash board. Each one is an

independent embedded system yet the entire car can be said to function properly only if all

the systems work together.

5. Small size and weight

 An embedded system that is compact in size and has light weight will be desirable or more

popular than one that is bulky and heavy.

 Ex. Currently available cell phones. The cell phones that have the maximum features are

popular but also their size and weight is an important characteristic

EMBEDDED SYSTEM DESIGN CONCEPTS MODULE-4

6. Power concerns

 It is desirable that the power utilization and heat dissipation of any embedded system be

low.

 If more heat is dissipated then additional units like heat sinks or cooling fans need to be

added to the circuit.

If more power is required then a battery of higher power or more batteries need to be

accommodated in the embedded system



QUALITY ATTRIBUTES OF EMBEDDED SYSTEM

These are the attributes that together form the deciding factor about the quality of an embedded

system.

There are two types of quality attributes are:-

1. Operational Quality Attributes.

 These are attributes related to operation or functioning of an embedded system. The way

an embedded system operates affects its overall quality.

2. Non-Operational Quality Attributes.

 These are attributes not related to operation or functioning of an embedded system. The

way an embedded system operates affects its overall quality.

 These are the attributes that are associated with the embedded system before it can be put

in operation.

Operational Attributes

a) Response

 Response is a measure of quickness of the system.

 It gives you an idea about how fast your system is tracking the input variables.

 Most of the embedded system demand fast response which should be real-time.

b) Throughput

 Throughput deals with the efficiency of system.

 It can be defined as rate of production or process of a defined process over a stated period

of time.

EMBEDDED SYSTEM DESIGN CONCEPTS MODULE-4

 In case of card reader like the ones used in buses, throughput means how much transaction

the reader can perform in a minute or hour or day.

EMBEDDED SYSTEM DESIGN CONCEPTS MODULE-4

EMBEDDED SYSTEM DESIGN CONCEPTS MODULE-4

c) Reliability

 Reliability is a measure of how much percentage you rely upon the proper functioning of

the system .

 Mean Time between failures and Mean Time To Repair are terms used in defining system

reliability.

 Mean Time between failures can be defined as the average time the system is functioning

before a failure occurs.

 Mean time to repair can be defined as the average time the system has spent in repairs.

d) Maintainability

 Maintainability deals with support and maintenance to the end user or a client in case of

technical issues and product failures or on the basis of a routine system checkup

 It can be classified into two types :-

1. Scheduled or Periodic Maintenance

 This is the maintenance that is required regularly after a periodic time interval.

 Example : Periodic Cleaning of Air Conditioners Refilling of printer cartridges.

2. Maintenance to unexpected failure

 This involves the maintenance due to a sudden breakdown in the functioning of the system.

 Example:

1. Air conditioner not powering on

2. Printer not taking paper in spite of a full paper stack

e) Security

 Confidentiality, Integrity and Availability are three corner stones of information security.

 Confidentiality deals with protection data from unauthorized disclosure.

 Integrity gives protection from unauthorized modification.

 Availability gives protection from unauthorized user

 Certain Embedded systems have to make sure they conform to the security measures.

EMBEDDED SYSTEM DESIGN CONCEPTS MODULE-4

 Ex. An Electronic Safety Deposit Locker can be used only with a pin number like a

password.

f) Safety

 Safety deals with the possible damage that can happen to the operating person and

environment due to the breakdown of an embedded system or due to the emission of

hazardous materials from the embedded products.

EMBEDDED SYSTEM DESIGN CONCEPTS MODULE-4

 A safety analysis is a must in product engineering to evaluate the anticipated damage and

determine the best course of action to bring down the consequence of damages to an

acceptable level.

Non Operational Attributes

a) Testability and Debug-ability

 It deals with how easily one can test his/her design, application and by which mean he/she

can test it.

 In hardware testing the peripherals and total hardware function in designed manner

 Firmware testing is functioning in expected way

 Debug-ability is means of debugging the product as such for figuring out the probable

sources that create unexpected behavior in the total system

b) Evolvability

 For embedded system, the qualitative attribute “Evolvability” refer to ease with which the

embedded product can be modified to take advantage of new firmware or hardware

technology.

c) Portability

 Portability is measured of “system Independence”.

 An embedded product can be called portable if it is capable of performing its operation as

it is intended to do in various environments irrespective of different processor and or

controller and embedded operating systems.

d) Time to prototype and market

 Time to Market is the time elapsed between the conceptualization of a product and time at

which the product is ready for selling or use

 Product prototyping help in reducing time to market.

 Prototyping is an informal kind of rapid product development in which important feature

of the under consider are develop.

EMBEDDED SYSTEM DESIGN CONCEPTS MODULE-4

 In order to shorten the time to prototype, make use of all possible option like use of reuse,

off the self component etc.

e) Per unit and total cost

 Cost is an important factor which needs to be carefully monitored. Proper market study and

cost benefit analysis should be carried out before taking decision on the per unit cost of the

embedded product.

 When the product is introduced in the market, for the initial period the sales and revenue

will be low

 There won’t be much competition when the product sales and revenue increase.

 During the maturing phase, the growth will be steady and revenue reaches highest point

and at retirement time there will be a drop in sales volume.

Embedded Systems-Application and Domain specific

Application specific systems : Washing Machine

Let us see the important parts of the washing machine; this will also help us understand the working

of the washing machine:

1) Water inlet control valve: Near the water inlet point of the washing there is water inlet control

valve. When you load the clothes in washing machine, this valve gets opened automatically and it

closes automatically depending on the total quantity of the water required. The water control valve

is actually the solenoid valve.

EMBEDDED SYSTEM DESIGN CONCEPTS MODULE-4

2) Water pump: The water pump circulates water through the washing machine. It works in two

directions, re-circulating the water during wash cycle and draining the water during the spin cycle.

EMBEDDED SYSTEM DESIGN CONCEPTS MODULE-4

3) Tub: There are two types of tubs in the washing washing machine: inner and outer. The clothes

are loaded in the inner tub, where the clothes are washed, rinsed and dried. The inner tub has small

holes for draining the water. The external tub covers theinner tub and supports it during various

cycles of clothes washing.

4) Agitator or rotating disc: The agitator is located inside the tub of the washing machine. It is

the important part of the washing machine that actually performs the cleaning operation of the

clothes. During the wash cycle the agitator rotates continuously and produces strong rotating

currents within the water due to which the clothes also rotate inside the tub. The rotation of the

clothes within water containing the detergent enables the removal of the dirt particles from the

fabric of the clothes. Thus the agitator produces most important function of rubbing the clothes

with each other as well as with water.

In some washing machines, instead of the long agitator, there is a disc that contains blades on its

upper side. The rotation of the disc and the blades produce strong currents within the water and

the rubbing of clothes that helps in removing the dirt from clothes.

5) Motor of the washing machine: The motor is coupled to the agitator or the disc and produces

it rotator motion. These are multispeed motors, whose speed can be changed as per the

requirement. In the fully automatic washing machine the speed of the motor i.e. the agitator

changes automatically as per the load on the washing machine.

6) Timer: The timer helps setting the wash time for the clothes manually. In the automatic mode

the time is set automatically depending upon the number of clothes inside the washing machine.

7) Printed circuit board (PCB): The PCB comprises of the various electronic components and

circuits, which are programmed to perform in unique ways depending on the load conditions (the

condition and the amount of clothes loaded in the washing machine). They are sort of artificial

intelligence devices that sense the various external conditions and take the decisions accordingly.

These are also called as fuzzy logic systems. Thus the PCB will calculate the total weight of the

clothes, and find out the quantity of water and detergent required, and the total time required for

washing the clothes. Then they will decide the time required for washing and rinsing. The entire

processing is done on a kind of processor which may be a microprocessor or microcontroller.

EMBEDDED SYSTEM DESIGN CONCEPTS MODULE-4

8) Drain pipe: The drain pipe enables removing the dirty water from the washing that has been

used for the washing purpose.

Automotive Embedded System (AES)

 The Automotive industry is one of the major application domains of embedded systems.

 Automotive embedded systems are the one where electronics take control over the

mechanical system. Ex. Simple viper control.

 The number of embedded controllers in a normal vehicle varies somewhere between 20 to

40 and can easily be between 75 to 100 for more sophisticated vehicles.

 One of the first and very popular use of embedded system in automotive industry was

microprocessor based fuel injection.

Some of the other uses of embedded controllers in a vehicle are listed below:

a. Air Conditioner

b. Engine Control

c. Fan Control

d. Headlamp Control

e. Automatic break system control

f. Wiper control

g. Air bag control

h. Power Windows

AES are normally built around microcontrollers or DSPs or a hybrid of the two and are generally

known as Electronic Control Units (ECUs).

EMBEDDED SYSTEM DESIGN CONCEPTS MODULE-4

Types Of Electronic Control Units(ECU)

1. High-speed Electronic Control Units (HECUs):

a. HECUs are deployed in critical control units requiring fast response.

b. They Include fuel injection systems, antilock brake systems, engine control, electronic throttle,

steering controls, transmission control and central control units.

2. Low Speed Electronic Control Units (LECUs):-

a. They are deployed in applications where response time is not so critical.

b. They are built around low cost microprocessors and microcontrollers and digital signal

processors.

c. Audio controller, passenger and driver door locks, door glass control etc.

 Automotive Communication Buses

Embedded system used inside an automobile communicate with each other using serial buses. This

reduces the wiring required.

Following are the different types of serial Interfaces used in automotive embedded applications:

a. Controller Area Network (CAN):-

 CAN bus was originally proposed by Robert Bosch.

 It supports medium speed and high speed data transfer

 CAN is an event driven protocol interface with support for error handling in data

transmission.

b. Local Interconnect Network (LIN):-

 LIN bus is single master multiple slave communication interface with support for data rates

up to 20 Kbps and is used for sensor/actuator interfacing

EMBEDDED SYSTEM DESIGN CONCEPTS MODULE-4

 LIN bus follows the master communication triggering to eliminate the bus arbitration

problem

 LIN bus applications are mirror controls , fan controls , seat positioning controls

c. Media-Oriented System Transport(MOST):-

 MOST is targeted for automotive audio/video equipment interfacing

 A MOST bus is a multimedia fiber optics point–to- point network implemented in a star ,

ring or daisy chained topology over optical fiber cables.

 MOST bus specifications define the physical as well as application layer , network layer

and media access control.

RTOS AND IDE FOR ESD MODULE-5

What Is OS ?

An Operating System (OS) is an interface between computer user and computer hardware. An operating system

is software which performs all the basic tasks like file management, memory management, process management,

handling input and output, and controlling peripheral devices such as disk drives and printers. Some popular

Operating Systems include Linux Operating System, Windows Operating System, VMS, OS/400, AIX, z/OS, etc.

Definition:

An operating system is a program that acts as an interface between the user and the computer hardware and

controls the execution of all kinds of programs.

Following are some of important functions of an operating System.

 Memory Management Processor Management Device Management File Management Security

Control over system performance Job accounting Error detecting aids Coordination between other

software and users

RTOS AND IDE FOR ESD MODULE-5

An Operating System provides services to both the users and to the programs. It provides programs an

environment to execute.

 It provides users the services to execute the programs in a convenient manner.

 Following are a few common services provided by an operating system: Program execution

 I/O operations

 File System manipulation

 Communication

 Error Detection

 Resource Allocation

 Protection

Basic Functions of Operation System:

The various functions of operating system are as follows:

1. Process Management:

 A program does nothing unless their instructions are executed by a CPU.A process is a program

in execution. A time shared user program such as a complier is a process. A word processing

program being run by an individual user on a pc is a process.

 A system task such as sending output to a printer is also a process. A process needs certain

resources including CPU time, memory files & I/O devices to accomplish its task.

 These resources are either given to the process when it is created or allocated to it while it is

running. The OS is responsible for the following activities of process management.

 Creating & deleting both user & system processes.

 Suspending & resuming processes.

 Providing mechanism for process synchronization.

 Providing mechanism for process communication.

 Providing mechanism for deadlock handling.

2. Main Memory Management:

The main memory is central to the operation of a modern computer system. Main memory is a

RTOS AND IDE FOR ESD MODULE-5

large array of words or bytes ranging in size from hundreds of thousand to billions. Main memory

stores the quickly accessible data shared by the CPU & I/O device. The central processor reads

instruction from main memory during instruction fetch cycle & it both reads

&writes data from main memory during the data fetch cycle. The main memory is generally the only

large storage device that the CPU is able to address & access directly. For example, for the CPU to

process data from disk. Those data must first be transferred to main memory by CPU generated

E/O calls. Instruction must be in memory for the CPU to execute them. The OS is responsible for

the following activities in connection with memory management.

 Keeping track of which parts of memory are currently being used & by whom.

 Deciding which processes are to be loaded into memory when memory space becomes

available.

 Allocating &deal locating memory space as needed.

3. File Management:

File management is one of the most important components of an OS computer can store

information on several different types of physical media magnetic tape, magnetic disk & optical disk

are the most common media. Each medium is controlled by a device such as disk drive or tape drive

those has unique characteristics. These characteristics include access speed, capacity, data transfer

rate & access method (sequential or random).For convenient use of computer system the OS

provides a uniform logical view of information storage. The OS abstracts from the physical

properties of its storage devices to define a logical storage unit the file. A file is collection of related

information defined by its creator. The OS is responsible for the following activities of file

management.

 Creating & deleting files.

 Creating & deleting directories.

 Supporting primitives for manipulating files & directories.

 Mapping files into secondary storage.

 Backing up files on non-volatile media.

4. I/O System Management:

One of the purposes of an OS is to hide the peculiarities of specific hardware devices from the user.

For example, in UNIX the peculiarities of I/O devices are hidden from the bulk of the OS itself by

the I/O subsystem. The I/O subsystem consists of:

 A memory management component that includes buffering, catching & spooling.

RTOS AND IDE FOR ESD MODULE-5

 A general device- driver interfaces drivers for specific hardware devices. Only the device

driver knows the peculiarities of the specific device to which it is assigned.

RTOS AND IDE FOR ESD MODULE-5

5. Secondary Storage Management:

The main purpose of computer system is to execute programs. These programs with the data

they access must be in main memory during execution. As the main memory is too small to

accommodate all data & programs & because the data that it holds are lost when power is

lost. The computer system must provide secondary storage to back-up main memory. Most

modern computer systems are disks as the storage medium to store data & program. The

operating system is responsible for the following activities of disk management.

 Free space management.

 Storage allocation.

 Disk scheduling

Because secondary storage is used frequently it must be used efficiently.

Networking:

A distributed system is a collection of processors that don’t share memory peripheral devices or

a clock. Each processor has its own local memory & clock and the processor communicate with

one another through various communication lines such as high speed buses or networks. The

processors in the system are connected through communication networks which are configured

in a number of different ways. The communication network design must consider message

routing & connection strategies are the problems of connection & security.

Protection or security:

If a computer system has multi users & allow the concurrent execution of multiple processes

then the various processes must be protected from one another’s activities. For that purpose,

mechanisms ensure that files, memory segments, CPU & other resources can be operated on by

only those processes that have gained proper authorization from the OS.

Command interpretation:

One of the most important functions of the OS is connected interpretation where it acts as the

interface between the user & the OS.

RTOS AND IDE FOR ESD MODULE-5

Monolithic Operating Systems:

• Oldest kind of OS structure (“modern” examples are DOS, original MacOS)

• Problem: applications can e.g. – trash OS software. – trash another application. – hoard CPU time. –

abuse I/O devices. – Etc.

• No good for fault containment (or multi-user).

RTOS AND IDE FOR ESD MODULE-5

• Need a better solution.

Microkernel Operating Systems:

 Alternative structure: – push some OS services into servers. – servers may be privileged (i.e.

operate in kernel mode).

• Increases both modularity and extensibility.

• Still access kernel via system calls, but need new way to access servers: ⇒ inter-process

communication (IPC) schemes

RTOS AND IDE FOR ESD MODULE-5

Real time Systems:

Real time system is used when there are rigid time requirements on the operation of a processor or flow

of data. Sensors bring data to the computers. The computer analyzes data and adjusts controls to modify

the sensors inputs. System that controls scientific experiments, medical imaging systems and some display

systems are real time systems. The disadvantages of real time system are: a. A real time system is

considered to function correctly only if it returns the correct result within the time constraints.

b. Secondary storage is limited or missing instead data is usually stored in short term memory or ROM. c.

Advanced OS features are absent. Real time system is of two types such as

• Hard real time systems: It guarantees that the critical task has been completed on time. The sudden

task is takes place at a sudden instant of time.

• Soft real time systems: It is a less restrictive type of real time system where a critical task gets priority

over other tasks and retains that priority until it computes. These have more limited utility than hard real

time systems. Missing an occasional deadline is acceptable e.g. QNX, VX works. Digital audio or multimedia

is included in this category. It is a special purpose OS in which there are rigid time requirements on the

operation of a processor. A real time OS has well defined fixed time constraints. Processing must be done

within the time constraint or the system will fail. A real time system is said to function correctly only if it

returns the correct result within the time constraint. These systems are characterized by having time as a

key parameter.

Task :

 Task is a piece of code or program that is separate from another task and can be

executed independently of the other tasks.

 In embedded systems, the operating system has to deal with a limited number of

tasks depending on the functionality to be implemented in the embedded system.

RTOS AND IDE FOR ESD MODULE-5

 Multiple tasks are not executed at the same time instead they are executed in pseudo

parallel i.e. the tasks execute in turns as the use the processor.

 From a multitasking point of view, executing multiple tasks is like a single book being

read by multiple people, at a time only one person can read it and then take turns to

read it.

 Different bookmarks may be used to help a reader identify where to resume reading

next time.

 An Operating System decides which task to execute in case there are multiple tasks

to be executed. The operating system maintains information about every task and

information about the state of each task.

 The information about a task is recorded in a data structure called the task context.

When a task is executing, it uses the processor and the registers available for all sorts

of processing. When a task leaves the processor for another task to execute before it

has finished its own, it should resume at a later time from where it stopped and not

from the first instruction. This requires the information about the task with respect

to the registers of the processor to be stored somewhere. This information is

recorded in the task context.

Task States
In an operation system there are always multiple tasks. At a time only one task can be executed.

This means that there are other tasks which are waiting their turn to be

executed.

Depending upon execution or not a task may be classified into the following three states:

 Running state - Only one task can actually be using the processor at a given time that task

is said to be the “running” task and its state is “running state”. No other task can be in that

same state at the same time

 Ready state - Tasks that are not currently using the processor but are ready to run are in the

“ready” state. There may be a queue of tasks in the ready state.

 Waiting state - Tasks that are neither in running nor ready state but that are waiting for

some event external to themselves to occur before the can go for execution on are in the

“waiting” state.

RTOS AND IDE FOR ESD MODULE-5

Process Concept:

Process: A process or task is an instance of a program in execution. The execution of a process

must programs in a sequential manner. At any time at most one instruction is executed. The

process includes the current activity as represented by the value of the program counter and the

content of the processors registers. Also it includes the process stack which contain temporary

data (such as method parameters return address and local variables) & a data section which

contain global variables.

Difference between process & program:

A program by itself is not a process. A program in execution is known as a process. A program

is a passive entity, such as the contents of a file stored on disk where as process is an active entity

with a program counter specifying the next instruction to execute and a set of associated

resources may be shared among several process with some scheduling algorithm being used to

determinate when the stop work on one process and service a different one.

Process state: As a process executes, it changes state. The state of a process is defined by the

correct activity of that process. Each process may be in one of the following states.

 New: The process is being created.

 Ready: The process is waiting to be assigned to a processor.

 Running: Instructions are being executed.

 Waiting: The process is waiting for some event to occur.

 Terminated: The process has finished execution.

Many processes may be in ready and waiting state at the same time. But only one process can

RTOS AND IDE FOR ESD MODULE-5

be running on any processor at any instant.

Process scheduling:

Scheduling is a fundamental function of OS. When a computer is multiprogrammed, it has

multiple processes completing for the CPU at the same time. If only one CPU is available, then

a choice has to be made regarding which process to execute next. This decision making process

is known as scheduling and the part of the OS that makes this choice is called a scheduler. The

algorithm it uses in making this choice is called scheduling algorithm.

Scheduling queues: As processes enter the system, they are put into a job queue. This queue

consists of all process in the system. The process that are residing in main memory and are

ready & waiting to execute or kept on a list called ready queue.

Process control block:

Each process is represented in the OS by a process control block. It is also by a process

control block. It is also known as task control block.

RTOS AND IDE FOR ESD MODULE-5

A process control block contains many pieces of information associated with a specific

process. It includes the following informations.

 Process state: The state may be new, ready, running, waiting or terminated state.

 Program counter:it indicates the address of the next instruction to be executed

for this purpose.

 CPU registers: The registers vary in number & type depending on the computer

architecture. It includes accumulators, index registers, stack pointer & general

purpose registers, plus any condition- code information must be saved when an

interrupt occurs to allow the process to be continued correctly after- ward.

 CPU scheduling information:This information includes process priority pointers

to scheduling queues & any other scheduling parameters.

 Memory management information: This information may include such

information as the value of the bar & limit registers, the page tables or the

segment tables, depending upon the memory system used by the operating

system.

 Accounting information: This information includes the amount of CPU and real

time used, time limits, account number, job or process numbers and so on.

 I/O Status Information: This information includes the list of I/O devices allocated to this

process, a list of open files and so on. The PCB simply serves as the repository for any

information that may vary from process to process

RTOS AND IDE FOR ESD MODULE-5

Threads :

Applications use concurrent processes to speed up their operation. However,

switching between processes within an application incurs high process switching

overhead because the size of the process state information is large, so operating

system designers developed an alternative model of execution of a program, called

a thread, that could provide concurrency within an application with less overhead

To understand the notion of threads, let us analyze process switching
overhead and see where a saving can be made. Process switching overhead
has two components:

• Execution related overhead: The CPU state of the running process
has to be saved and the CPU state of the new process has to be
loaded in the CPU. This overhead is unavoidable.

• Resource-use related overhead: The process context also has to be

switched. It involves switching of the information about resources

allocated to the process, such as memory and files, and interaction

of the process with other processes. The large size of this

information adds to the process switching overhead.

Consider child processes Pi and Pj of the primary process of an application.

These processes inherit the context of their parent process. If none of these

processes have allocated any resources of their own, their context is identical;

their state information differs only in their CPU states and contents of their

stacks. Consequently, while switching between Pi and Pj ,much of the saving

and loading of process state information is redundant. Threads exploit this

feature to reduce the switching overhead.

A process creates a thread through a system call. The thread does not have

resources of its own, so it does not have a context; it operates by using the

context of the process, and accesses the resources of the process through it.

We use the phrases ―thread(s) of a process‖ and ―parent process of a thread‖

to describe the relationship between a thread and the process whose context

it uses.

RTOS AND IDE FOR ESD MODULE-5

Figure illustrates the relationship between threads and processes. In the

abstract view of Figure , processPi has three threads,which are represented by

wavy lines inside the circle representing process Pi . Figure shows an

implementation arrangement. Process Pi has a context and a PCB. Each thread

of Pi is an execution of a program, so it has its own stack and a thread control

block (TCB),which is analogous to the PCB and stores the following

information:

1. Thread scheduling information—thread id, priority and state.

2. CPU state, i.e., contents of the PSW and GPRs.

3. Pointer to PCB of parent process.

4. TCB pointer, which is used to make lists of TCBs for scheduling.

RTOS AND IDE FOR ESD MODULE-5

POSIX Threads:

POSIX Threads, usually referred to as pthreads, is an execution model that exists

independently from a language, as well as a parallel execution model. It allows a program to

control multiple different flows of work that overlap in time. Each flow of work is referred to

as a thread, and creation and control over these flows is achieved by making calls to the

POSIX Threads API. POSIX Threads is an API defined by the standard POSIX.1c, Threads

extensions (IEEE Std 1003.1c-1995).

Implementations of the API are available on many Unix-like POSIX-conformant operating

systems such as FreeBSD, NetBSD, OpenBSD, Linux, Mac OS X, Android[1] and Solaris,

typically bundled as a library libpthread. DR-DOS and Microsoft Windows implementations

also exist: within the SFU/SUA subsystem which provides a native implementation of a

number of POSIX APIs, and also within third-party packages such as pthreads-w32,[2] which

implements pthreads on top of existing Windows API.

https://en.wikipedia.org/wiki/Execution_model
https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/IEEE
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/OpenBSD
https://en.wikipedia.org/wiki/OpenBSD
https://en.wikipedia.org/wiki/Mac_OS_X
https://en.wikipedia.org/wiki/Mac_OS_X
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Solaris_(operating_system)
https://en.wikipedia.org/wiki/DR-DOS
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Windows_Services_for_UNIX
https://en.wikipedia.org/wiki/Third-party_software_component
https://en.wikipedia.org/wiki/POSIX_Threads#cite_note-2
https://en.wikipedia.org/wiki/Windows_API

RTOS AND IDE FOR ESD MODULE-5

Preemptive Scheduling:

It is the responsibility of CPU scheduler to allot a process to CPU whenever the CPU is

in the idle state. The CPU scheduler selects a process from ready queue and allocates

the process to CPU. The scheduling which takes place when a process switches from

running state to ready state or from waiting state to ready state is called Preemptive

Scheduling

Shortest Job First Scheduling (SJF) Algorithm: This algorithm associates with each

process if the CPU is available. This scheduling is also known as shortest next CPU burst,

because the scheduling is done by examining the length of the next CPU burst of the

process rather than its total length. Consider the following example:

Process CPU time

P1 3

P2 5

P3 2

P4 4

Solution:According to the SJF the Gantt chart will be

P3 P1 P2 P4

0 2 5 9 14

The waiting time for process P1 = 0, P2 = 2, P3 = 5, P4 = 9 then the turnaround time for

process P3 = 0 + 2 = 2, P1 = 2 + 3 = 5, P4 = 5 + 4 = 9, P2 = 9 + 5 =14.

Then average waiting time = (0 + 2 + 5 + 9)/4 = 16/4 = 4

Average turnaround time = (2 + 5 + 9 + 14)/4 = 30/4 =

7.5

The SJF algorithm may be either preemptive or non preemptive algorithm. The

preemptive SJF is also known as shortest remaining time first.

Consider the following example.

Process Arrival Time CPU time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

RTOS AND IDE FOR ESD MODULE-5

In this case the Gantt chart will be

P1 P2 P4 P1 P3

0 1 5 10 17 26

The waiting time for

process P1 = 10 - 1 =9

P2 = 1 – 1 = 0

P3 = 17 – 2 = 15

P4 = 5 – 3 = 2

The average waiting time = (9 + 0 + 15 + 2)/4 = 26/4 = 6.5

Round Robin Scheduling Algorithm: This type of algorithm is designed only for the time

sharing system. It is similar to FCFS scheduling with preemption condition to switch between

processes. A small unit of time called quantum time or time slice is used to switch between

the processes. The average waiting time under the round robin policy is quiet long. Consider

the following example:

Process CPU time

P1 3

P2 5

P3 2

P4 4

Time Slice = 1 millisecond.

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P4 P2 P4 P2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

The waiting time for process

P1 = 0 + (4 – 1) + (8 – 5) = 0 + 3 + 3 = 6

P2 = 1 + (5 – 2) + (9 – 6) + (11 – 10) + (12 – 11) + (13 – 12) = 1 + 3 + 3 + 1 + 1 + 1 = 10

P3 = 2 + (6 – 3) = 2 + 3 = 5

P4 = 3 + (7 – 4) + (10 – 8) + (12 – 11) = 3 + 3 + 2 + 1 = 9

The average waiting time = (6 + 10 + 5 + 9)/4 = 7.5

RTOS AND IDE FOR ESD MODULE-5

Task Communication :

A shared memory is an extra piece of memory that is attached to some address spaces for

their owners to use. As a result, all of these processes share the same memory segment and

have access to it. Consequently, race conditions may occur if memory accesses are not

handled properly. The following figure shows two processes and their address spaces. The

yellow rectangle is a shared memory attached to both address spaces and both process 1 and

process 2 can have access to this shared memory as if the shared memory is part of its own

address space. In some sense, the original address spaces is "extended" by attaching this

shared memory.

RTOS AND IDE FOR ESD MODULE-5

Definition - What does Pipe mean?

A pipe is a method used to pass information from one program process to another. Unlike

other types of inter-process communication, a pipe only offers one-way communication by

passing a parameter or output from one process to another. The information that is passed

through the pipe is held by the system until it can be read by the receiving process. also known

as a FIFO for its behavior.

In computing, a named pipe (also known as a FIFO) is one of the methods for intern- process

communication.

 It is an extension to the traditional pipe concept on Unix. A traditional pipe is

“unnamed” and lasts only as long as the process.

 A named pipe, however, can last as long as the system is up, beyond the life of the

process. It can be deleted if no longer used.

 Usually a named pipe appears as a file, and generally processes attach to it for inter-

process communication. A FIFO file is a special kind of file on the local storage which

allows two or more processes to communicate with each other by reading/writing

to/from this file.

 A FIFO special file is entered into the filesystem by calling mkfifo() in C. Once we have

created a FIFO special file in this way, any process can open it for reading or writing, in

the same way as an ordinary file. However, it has to be open at both ends

simultaneously before you can proceed to do any input or output operations on it.

Message passing:

Message passing can be synchronous or asynchronous . Synchronous message

passing systems require the sender and receiver to wait for each other while

transferring the message. In asynchronous communication the sender and

receiver do not wait for each other and can carry on their own computations while

transfer of messages is being done.

https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)

RTOS AND IDE FOR ESD MODULE-5

The advantage to synchronous message passing is that it is conceptually less complex.

Synchronous message passing is analogous to a function call in which the message sender is

the function caller and the message receiver is the called function. Function calling is easy

and familiar. Just as the function caller stops until the called function completes, the sending

process stops until the receiving process completes. This alone makes synchronous message

unworkable for some applications. For example, if synchronous message passing would be

used exclusively, large, distributed systems generally would not perform well enough to be

usable. Such large, distributed systems may need to continue to operate while some of their

subsystems are down; subsystems may need to go offline for some kind of maintenance, or

have times when subsystems are not open to receiving input from other systems.

Message queue:

Message queues provide an asynchronous communications protocol, meaning that the

sender and receiver of the message do not need to interact with the message queue at the

same time. Messages placed onto the queue are stored until the recipient retrieves them.

Message queues have implicit or explicit limits on the size of data that may be transmitted in

a single message and the number of messages that may remain outstanding on the queue.

Many implementations of message queues function internally: within an operating system

or within an application. Such queues exist for the purposes of that system

only.[1][2][3]

Other implementations allow the passing of messages between different computer systems,

potentially connecting multiple applications and multiple operating systems.[4] These

message queueing systems typically provide enhanced resilience functionality to ensure that

messages do not get "lost" in the event of a system failure. Examples of commercial

implementations of this kind of message queueing software (also known as message-

oriented middleware) include IBM WebSphere MQ (formerly MQ Series) and Oracle

https://en.wikipedia.org/wiki/Asynchronous_communication
https://en.wikipedia.org/wiki/Asynchronous_communication
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Message_queue#cite_note-1
https://en.wikipedia.org/wiki/Message_queue#cite_note-1
https://en.wikipedia.org/wiki/Message_queue#cite_note-3
https://en.wikipedia.org/wiki/Message_queue#cite_note-4
https://en.wikipedia.org/wiki/Resilience_(network)
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Message-oriented_middleware
https://en.wikipedia.org/wiki/Message-oriented_middleware
https://en.wikipedia.org/wiki/IBM_WebSphere_MQ
https://en.wikipedia.org/wiki/Oracle_Advanced_Queuing

RTOS AND IDE FOR ESD MODULE-5

Advanced Queuing (AQ). There is a Java standard called Java Message Service, which has

several proprietary and free software implementations.

Implementations exist as proprietary software, provided as a service, open source software,

or a hardware-based solution.

Mail box:

Mailboxes provide a means of passing messages between tasks for data exchange or task

synchronization. For example, assume that a data gathering task that produces data needs to

convey the data to a calculation task that consumes the data. This data gathering task can

convey the data by placing it in a mailbox and using the SEND command; the calculation task

uses RECEIVE to retrieve the data. If the calculation task consumes data faster than the

gatherer produces it, the tasks need to be synchronized so that only new data is operated on

by the calculation task. Using mailboxes achieves synchronization by forcing the calculation

task to wait for new data before it operates. The data producer puts the data in a mailbox

and SENDs it. The data consumer task calls RECEIVE to check whether there is new data in

the mailbox; if not, RECEIVE calls Pause() to allow other tasks to execute while the

consuming task is waiting for the new data.

https://en.wikipedia.org/wiki/Oracle_Advanced_Queuing
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Java_Message_Service
https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Message_queuing_service

RTOS AND IDE FOR ESD MODULE-5

Signaling :

signals are commonly used in POSIX systems. Signals are sent to the current process telling

it what it needs to do, such as, shutdown, or that it has committed an exception. A process

has several signal-handlers which execute code when a relevant signal is encountered. The

ANSI header for these tasks is <signal.h>, which includes routines to allow signals to be

raised and read.

Signals are essentially software interrupts. It is possible for a process to ignore most signals,

but some cannot be blocked. Some of the common signals are Segmentation Violation

(reading or writing memory that does not belong to this process), Illegal Instruction (trying

to execute something that is not a proper instruction to the CPU), Halt (stop processing for

the moment), Continue (used after a Halt), Terminate (clean up and quit), and Kill (quit now

without cleaning up).

RPC:

Remote Procedure Call (RPC) is a powerful technique for constructing distributed, client-

server based applications. It is based on extending the conventional local procedure

calling, so that the called procedure need not exist in the same address space as the

calling procedure. The two processes may be on the same system, or they may be on

different systems with a network connecting them.

RTOS AND IDE FOR ESD MODULE-5

The following steps take place during a RPC:

1. A client invokes a client stub procedure, passing parameters in the usual way. The client

stub resides within the client’s own address space.

2. The client stub marshalls(pack) the parameters into a message. Marshalling includes

converting the representation of the parameters into a standard format, and copying each

parameter into the message.

3. The client stub passes the message to the transport layer, which sends it to the remote

server machine.

4. On the server, the transport layer passes the message to a server stub, which

demarshalls(unpack) the parameters and calls the desired server routine using the regular

procedure call mechanism.

5. When the server procedure completes, it returns to the server stub (e.g., via a normal

procedure call return), which marshalls the return values into a message. The server stub

then hands the message to the transport layer.

6. The transport layer sends the result message back to the client transport layer, which

hands the message back to the client stub.

7. The client stub demarshalls the return parameters and execution returns to the caller.

Process Synchronization

A co-operation process is one that can affect or be affected by other processes

executing in the system. Co-operating process may either directly share a logical

address space or be allotted to the shared data only through files. This concurrent

access is known as Process synchronization.

Critical Section Problem:

Consider a system consisting of n processes (P0, P1, ………Pn -1) each process has

a segment of code which is known as critical section in which the process may be

changing common variable, updating a table, writing a file and so on. The

important feature of the system is that when the process is executing in its critical

section no other process is to be allowed to execute in its critical section.

RTOS AND IDE FOR ESD MODULE-5

The execution of critical sections by the processes is a mutually exclusive. The

critical section problem is to design a protocol that the process can use to

cooperate each process must request permission to enter its critical section. The

section of code implementing this request is the entry section. The critical section

is followed on exit section. The remaining code is the remainder section.

Example:

While (1)

{

Entry Section;

Critical

Section; Exit

Section;

Remainder Section;

}

A solution to the critical section problem must satisfy the following three conditions.

1. Mutual Exclusion: If process Pi is executing in its critical section then no any

other process can be executing in their critical section.

2. Progress: If no process is executing in its critical section and some

process wish to enter their critical sections then only those process that

are not executing in their remainder section can enter its critical section

next.

3. Bounded waiting: There exists a bound on the number of times that

other processes are allowed to enter their critical sections after a process

has made a request.

Deadlock:
In a multiprogramming environment several processes may compete for a finite

number of resources. A process request resources; if the resource is available at

that time a process enters the wait state. Waiting process may never change its

state because the resources requested are held by other waiting process. This

situation is known as deadlock.

RTOS AND IDE FOR ESD MODULE-5

Deadlock Characteristics: In a deadlock process never finish executing and

system resources are tied up. A deadlock situation can arise if the following four

conditions hold simultaneously in a system.

 Mutual Exclusion: At a time only one process can use the resources. If

another process requests that resource, requesting process must wait

until the resource has been released.

 Hold and wait: A process must be holding at least one resource and

waiting to additional resource that is currently held by other processes.

 No Preemption: Resources allocated to a process can’t be forcibly taken

out from it unless it releases that resource after completing the task.

 Circular Wait: A set {P0, P1, …….Pn} of waiting state/ process must exists

such that P0 is waiting for a resource that is held by P1, P1 is waiting for

the resource that is held by P2 ….. P(n – 1) is waiting for the resource that

is held by Pn and Pn is waiting for the resources that is held by P4.

Dining Philosopher Problem: Consider 5 philosophers to spend their lives in thinking &

eating. A philosopher shares common circular table surrounded by 5 chairs each occupies

by one philosopher. In the center of the table there is a bowl of rice and the table is laid

with 6 chopsticks as shown in below figure.

RTOS AND IDE FOR ESD MODULE-5

When a philosopher thinks she does not interact with her colleagues. From time to time a

philosopher gets hungry and tries to pickup two chopsticks that are closest to her. A philosopher

may pickup one chopstick or two chopsticks at a time but she cannot pickup a chopstick that is

already in hand of the neighbor. When a hungry philosopher has both her chopsticks at the same

time, she eats without releasing her chopsticks. When she finished eating, she puts down both

of her chopsticks and starts thinking again. This problem is considered as classic synchronization

problem. According to this problem each chopstick is represented by a semaphore. A philosopher

grabs the chopsticks by executing the wait operation on that semaphore. She releases the

chopsticks by executing the signal operation on the appropriate semaphore

The structure of dining philosopher is as follows:

do{

Wait (chopstick [i]);

Wait (chopstick [(i+1)%5]);

.

Eat

.

Signal (chopstick [i]);

Signal (chopstick [(i+1)%5]);

.

Think

.

} While (1);

RTOS AND IDE FOR ESD MODULE-5

The Integrated Development Environment:

Integrated development environments are designed to maximize programmer productivity

by providing tight-knit components with similar user interfaces. IDEs present a single

program in which all development is done. This program typically provides many features

for authoring, modifying, compiling, deploying and debugging software. This contrasts with

software development using unrelated tools, such as vi, GCC or make.

One aim of the IDE is to reduce the configuration necessary to piece together multiple

development utilities, instead providing the same set of capabilities as a cohesive unit.

Reducing that setup time can increase developer productivity, in cases where learning to use

the IDE is faster than manually integrating all of the individual tools. Tighter integration of

all development tasks has the potential to improve overall productivity beyond just helping

with setup tasks. For example, code can be continuously parsed while it is being edited,

providing instant feedback when syntax errors are introduced. That can speed learning a

new programming language and its associated libraries.

Some IDEs are dedicated to a specific programming language, allowing a feature set that

most closely matches the programming paradigms of the language. However, there are many

multiple-language IDEs, such as Eclipse, ActiveState Komodo, IntelliJ IDEA, Oracle

JDeveloper, NetBeans, Codenvy and Microsoft Visual Studio. Xcode, Xojo and Delphi are

dedicated to a closed language or set of programming languages.

While most modern IDEs are graphical, text-based IDEs such as Turbo Pascal were in popular

use before the widespread availability of windowing systems like Microsoft Windows and

the X Window System (X11). They commonly use function keys or hotkeys to execute

frequently used commands or macros.

http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/Vi
http://en.wikipedia.org/wiki/Vi
http://en.wikipedia.org/wiki/Make_%28software%29
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Eclipse_%28software%29
http://en.wikipedia.org/wiki/ActiveState_Komodo
http://en.wikipedia.org/wiki/IntelliJ_IDEA
http://en.wikipedia.org/wiki/Oracle_JDeveloper
http://en.wikipedia.org/wiki/Oracle_JDeveloper
http://en.wikipedia.org/wiki/NetBeans
http://en.wikipedia.org/wiki/NetBeans
http://en.wikipedia.org/wiki/Microsoft_Visual_Studio
http://en.wikipedia.org/wiki/Xcode
http://en.wikipedia.org/wiki/Xojo
http://en.wikipedia.org/wiki/Embarcadero_Delphi
http://en.wikipedia.org/wiki/Turbo_Pascal
http://en.wikipedia.org/wiki/Turbo_Pascal
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/X_Window_System
http://en.wikipedia.org/wiki/Keyboard_shortcut

RTOS AND IDE FOR ESD MODULE-5

A cross compiler is a compiler capable of creating executable code for a platform other than

the one on which the compiler is running. For example in order to compile for Linux/ARM

you first need to obtain its libraries to compile against.

A cross compiler is necessary to compile for multiple platforms from one machine. A

platform could be infeasible for a compiler to run on, such as for the microcontroller of an

embedded system because those systems contain no operating system. In

paravirtualization one machine runs many operating systems, and a cross compiler could

generate an executable for each of them from one main source.

Cross compilers are not to be confused with a source-to-source compilers. A cross compiler

is for cross-platform software development of binary code, while a source-to- source

"compiler" just translates from one programming language to another in text code. Both are

programming tools.

Uses of cross compilers

The fundamental use of a cross compiler is to separate thebuild environment from target

environment. This is useful in a number of situations:

Embedded computers where a device has extremely limited resources. For example, a

microwave oven will have an extremely small computer to read its touchpad and door

sensor, provide output to a digital display and speaker, and to control the machinery for

cooking food. This computer will not be powerful enough to run a compiler, a file system,

or a development environment. Since debugging and testing may also require more

resources than are available on an embedded system, cross- compilation can be less

involved and less prone to errors than native compilation.

Compiling for multiple machines. For example, a company may wish to support several

different versions of an operating system or to support several different operating systems.

By using a cross compiler, a single build environment can be set up to compile for each of

these targets.

Compiling on a server farm. Similar to compiling for multiple machines, a complicated build

that involves many compile operations can be executed across any machine that is free,

regardless of its underlying hardware or the operating system version that it is running.

http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Executable
http://en.wikipedia.org/wiki/Platform_%28computing%29
http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Paravirtualization
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Source-to-source_compiler
http://en.wikipedia.org/wiki/Programming_tool
http://en.wikipedia.org/wiki/Programming_tool
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Server_farm

RTOS AND IDE FOR ESD MODULE-5

Bootstrapping to a new platform. When developing software for a new platform, or the

emulator of a future platform, one uses a cross compiler to compile necessary tools such as

the operating system and a native compiler.

What is a Disassembler?

In essence, a disassembler is the exact opposite of an assembler. Where an assembler

converts code written in an assembly language into binary machine code, a disassembler

reverses the process and attempts to recreate the assembly code from the binary machine

code.

Since most assembly languages have a one-to-one correspondence with underlying

machine instructions, the process of disassembly is relatively straight-forward, and a basic

disassembler can often be implemented simply by reading in bytes, and performing a table

lookup. Of course, disassembly has its own problems and pitfalls, and they are covered later

in this chapter.

Many disassemblers have the option to output assembly language instructions in Intel,

AT&T, or (occasionally) HLA syntax. Examples in this book will use Intel and AT&T syntax

interchangeably. We will typically not use HLA syntax for code examples, but that may

change in the future.

Decompilers

Decompilers take the process a step further and actually try to reproduce the code in a

high level language. Frequently, this high level language is C, because C is simple and

primitive enough to facilitate the decompilation process. Decompilation does have its

drawbacks, because lots of data and readability constructs are lost during the original

compilation process, and they cannot be reproduced. Since the science of decompilation is

still young, and results are "good" but not "great", this page will limit itself to a listing of

decompilers, and a general (but brief) discussion of the possibilities of decompilation.

http://en.wikipedia.org/wiki/Bootstrapping_%28compilers%29

RTOS AND IDE FOR ESD MODULE-5

Tools

As with other software, embedded system designers use compilers, assemblers, and

debuggers to develop embedded system software. However, they may also use some more

specific tools:

For systems using digital signal processing, developers may use a math workbench such as

Scilab / Scicos, MATLAB / Simulink, EICASLAB, MathCad, Mathematica,or FlowStone DSP to

simulate the mathematics. They might also use libraries for both the host and target which

eliminates developing DSP routines as done in DSPnano RTOS.

model based development tool like VisSim lets you create and simulate graphical data flow

and UML State chart diagrams of components like digital filters, motor controllers,

communication protocol decoding and multi-rate tasks. Interrupt handlers can also be

created graphically. After simulation, you can automatically generate C-code to the VisSim

RTOS which handles the main control task and preemption of background tasks, as well as

automatic setup and programming of on-chip peripherals.

Debugging

Embedded debugging may be performed at different levels, depending on the facilities

available. From simplest to most sophisticated they can be roughly grouped into the

following areas:

Interactive resident debugging, using the simple shell provided by the embedded operating

system (e.g. Forth and Basic)

External debugging using logging or serial port output to trace operation using either a

monitor in flash or using a debug server like the Remedy Debugger which even works for

heterogeneous multicore systems.

An in-circuit debugger (ICD), a hardware device that connects to the microprocessor via a

JTAG or Nexus interface. This allows the operation

of the microprocessor to be controlled externally, but is typically restricted to specific

debugging capabilities in the processor.

http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Debugger
http://en.wikipedia.org/wiki/Digital_signal_processing
http://en.wikipedia.org/wiki/Scilab
http://en.wikipedia.org/wiki/Scicos
http://en.wikipedia.org/wiki/MATLAB
http://en.wikipedia.org/wiki/Simulink
http://en.wikipedia.org/wiki/EICASLAB
http://en.wikipedia.org/wiki/MathCad
http://en.wikipedia.org/wiki/Mathematica
http://en.wikipedia.org/w/index.php?title=FlowStone_DSP&amp%3Baction=edit&amp%3Bredlink=1
http://en.wikipedia.org/w/index.php?title=FlowStone_DSP&amp%3Baction=edit&amp%3Bredlink=1
http://en.wikipedia.org/wiki/DSPnano_RTOS
http://en.wikipedia.org/wiki/VisSim
http://en.wikipedia.org/wiki/Interrupt
http://en.wikipedia.org/wiki/VisSim
http://en.wikipedia.org/wiki/RTOS
http://en.wikipedia.org/wiki/Preemption_%28computing%29
http://en.wikipedia.org/wiki/Debugging
http://en.wikipedia.org/wiki/Remedy_Debugger
http://en.wikipedia.org/wiki/Remedy_Debugger
http://en.wikipedia.org/wiki/Multi-core_processor
http://en.wikipedia.org/wiki/JTAG
http://en.wikipedia.org/wiki/JTAG
http://en.wikipedia.org/wiki/Nexus_%28standard%29

RTOS AND IDE FOR ESD MODULE-5

An in-circuit emulator (ICE) replaces the microprocessor with a simulated equivalent,

providing full control over all aspects of the microprocessor.

A complete emulator provides a simulation of all aspects of the hardware, allowing all of it

to be controlled and modified, and allowing debugging on a normal PC. The downsides are

expense and slow operation, in some cases up to 100X slower than the final system.

For SoC designs, the typical approach is to verify and debug the design on an FPGA

prototype board. Tools such as Certus are used to insert probes in the FPGA RTL that make

signals available for observation. This is used to debug hardware, firmware and software

interactions across multiple FPGA with capabilities similar to a logic analyzer.

Unless restricted to external debugging, the programmer can typically load and run

software through the tools, view the code running in the processor, and start or stop its

operation. The view of the code may be as HLL source-code, assembly code or mixture of

both.

Simulation is the imitation of the operation of a real-world process or system over time.[1]

The act of simulating something first requires that a model be developed; this model

represents the key characteristics or behaviors/functions of the selected physical or abstract

system or process. The model represents the system itself, whereas the simulation

represents the operation of the system over time.

Simulation is used in many contexts, such as simulation of technology for performance

optimization, safety engineering, testing, training, education, and video games. Often,

computer experiments are used to study simulation models.

Key issues in simulation include acquisition of valid source information about the relevant

selection of key characteristics and behaviours, the use of simplifying approximations and

assumptions within the simulation, and fidelity and validity of the simulation outcomes.

http://en.wikipedia.org/wiki/In-circuit_emulator
http://en.wikipedia.org/wiki/Emulator
http://en.wikipedia.org/wiki/High-level_programming_language
http://en.wikipedia.org/wiki/High-level_programming_language
http://en.wikipedia.org/wiki/Assembly_code
http://en.wikipedia.org/wiki/Simulation#cite_note-definition-1
http://en.wikipedia.org/wiki/Function_%28engineering%29
http://en.wikipedia.org/wiki/Technology
http://en.wikipedia.org/wiki/Safety_engineering
http://en.wikipedia.org/wiki/Safety_engineering
http://en.wikipedia.org/wiki/Training
http://en.wikipedia.org/wiki/Education
http://en.wikipedia.org/wiki/Video_game
http://en.wikipedia.org/wiki/Computer_experiment

RTOS AND IDE FOR ESD MODULE-5

Emulator

This article is about emulators in computing. For a line of digital musical instruments, see

E-mu Emulator. For the Transformers character, see Circuit Breaker

(Transformers).#Shattered Glass. For other uses, see Emulation (disambiguation).

DOSBox emulates the command-line interface of DOS.

In computing, an emulator is hardware or software or both that duplicates (or emulates)

the functions of one computer system (the guest) in another computer system (the host),

different from the first one, so that the emulated behavior closely resembles the behavior

of the real system (the guest).

The above described focus on exact reproduction of behavior is in contrast to some other

forms of computer simulation, in which an abstract model of a system is being simulated.

For example, a computer simulation of a hurricane or a chemical reaction is not emulation.

OUT-OF-CIRCUIT :The code to be run on the target embedded system is always developed

on the host computer. This code is called the binary executable image or simply hex code.

The process of putting this code in the memory chip of the target embedded system is called

Downloading.

http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/E-mu_Emulator
http://en.wikipedia.org/wiki/Circuit_Breaker_%28Transformers%29#Shattered_Glass
http://en.wikipedia.org/wiki/Circuit_Breaker_%28Transformers%29#Shattered_Glass
http://en.wikipedia.org/wiki/Circuit_Breaker_%28Transformers%29#Shattered_Glass
http://en.wikipedia.org/wiki/Emulation_%28disambiguation%29
http://en.wikipedia.org/wiki/Emulation_%28disambiguation%29
http://en.wikipedia.org/wiki/DOSBox
http://en.wikipedia.org/wiki/Command-line_interface
http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Computer_simulation

RTOS AND IDE FOR ESD MODULE-5

There are two ways of downloading the binary image on the embedded system:

1. Using a Device Programmer

A device programmer is a piece of hardware that works in two steps.

Step 1 Once the binary image is ready on the computer, the device programmer is

connected to the computer and the binary image is transferred to the device programmer.

Step 2 The microcontroller/microprocessor or memory chip, usually the ROM which is

supposed to contain the binary image is placed on the proper socket on the device

programmer. The device programmer contains a software interface through which the user

selects the target microprocessor for which the binary image has to be downloaded. The

Device programmer then transfers the binary image bit by bit to the chip.

2. Using In System Programmer(ISP)

Certain Target embedded platforms contain a piece of hardware called ISP that have a

hardware interface to both the computer as well the chip where the code is to be

downloaded.

The user through the ISP’s software interface sends the binary image to the target board.

This avoids the requirement of frequently removing the microprocessor / microcontroller

or ROM for downloading the code if a device programmer had to be used.

DEBUGGING THE EMBEDDED SOFTWARE

 Debugging is the process of eliminating the bugs/errors in software.

 The software written to run on embedded systems may contain errors and hence

needs debugging.

 However, the difficulty in case of embedded systems is to find out the bug/ error itself.

This is because the binary image you downloaded on the target board was free of

syntax errors but

RTOS AND IDE FOR ESD MODULE-5

still if the embedded system does not function the way it was supposed to be then it can be

either because of a hardware problem or a software problem. Assuming that the hardware

is perfect all that remains to check is the software.

 The difficult part here is that once the embedded system starts functioning there is

no way for the user or programmer to know the internal state of the components on

the target board.

 The most primitive method of debugging is using LEDs. This is similar to using a printf

or a cout statement in c/c++ programs to test if the control enters the loop or not.

Similarly an LED blind or a pattern of LED blinks can be used to check if the control

enters a particular piece of code.

There are other advanced debugging tools like;

a. Remote debugger

b. Emulator

c. Simulator

Remote Debuggers

 Remote Debugger is a tool that can be commonly used for:

 Downloading

 Executing and

 Debugging embedded software

 A Remote Debugger contains a hardware interface between the host computer and

the target embedded system.

