BMS INSTITUTE OF TECHNOLOGY AND
MANAGEMENT

(Affiliated to the Visvesvaraya Technological University, Belagavi)

Department of Master of Computer Applications

Subject: Database Management System

Prepared by: Drakshaveni G
Assistant Professor
Dept.of MCA
BMSIT&M

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M

Module -1

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M

Introduction to Database

1.0 Introduction

Database is a collection of related data. Database management system is software
designed to assist the maintenance and utilization of large scale collection of data. DBMS
came into existence in 1960 by Charles. Integrated data store whichPPp is also called as
the first general purpose DBMS. Again in 1960 IBM brought IMS-Information
management system. In 1970 EdgorCodd at IBM came with new database called RDBMS.
In 1980 then came SQL Architecture- Structure Query Language. In 1980 to 1990 there
were

advances in DBMS e.g. DB2, ORACLE.

Data

[J Data is raw fact or figures or entity.
(1 When activities in the organization takes place, the effect of these activities need

to be recorded which is known as Data.

Information

[1 Processed data is called information
The purpose of data. processing is to generate the information required for

(] carrying out the business activities.
In general data management consists of following tasks

« Data capture: Which is the task associated with gathering the data as and when they
originate.

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M 3

Data classification: Captured data has to be classified based on the nature and
intended usage.

Data storage: The segregated data has to be stored properly.
Data arranging: It is very important to arrange the data properly
Data retrieval: Data will be required frequently for further processing,

Hence it is very important to create some indexes so that data can be retrieved
easily.

Data maintenance: Maintenance is the task concerned with keeping the data up-
to-date.

Data Verification: Before storing the data it must be verified for any error.
Data Coding: Data will be coded for easy reference.

Data Editing: Editing means re-arranging the data or modifying the data for
presentation.

Data transcription: This is the activity where the data is converted from one form
into another.

Data transmission: This is a function where data is forwarded to the place where it
would be used further. sortMetadata.

metadata is definitional data thatprovidesinformationabout or documentation of other
data managed within an application or environment. The term should be used with
in any media. An item of metadata may describe collection of data including multiple

content items and hierarchical levels, for example database schema. In data processing,
caution as all data is about something, and is therefore metadata.

Database may be defined in simple terms as a collection of data

A database is a collection of related data.

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M 4

» The database can be of any size and of varying plexity.

« A database may be generated and maintained manually or it may be
puterized.Database .

Database Management System

« A Database Management System (DBMS) is a collection of program that enables
user to create and maintain a database.

« The DBMS is hence a general purpose software system that facilitates the process
of defining constructing and manipulating database for various applications.

1.1 Characteristics of DBMS

[To incorporate the requirements of the organization, system should be designed
for easy maintenance.

[0 Information systems should allow interactive access to data to obtain new
information without writing fresh programs.
System should be designed to co-relate different data to meet new requirements.

[0 An independent central repository, which gives information and meaning of
available data is required.

[0 Integrated database will help in understanding the inter-relationships between data

stored in different applications.
[0 The stored data should be made available for a ess by different users

simultaneously.
[0 Automatic recovery feature has to be provided to overe the problems with
processing system failure.

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M 5

DBMS Utilities
» A data loading utility:
Which allows easy loading.of data from the external format without writing
programs.

» A backup utility:

Which allo s to make copies of the database periodically to help in cases of
crashes and disasters.

* Recovery utility:

Which allows to reconstruct the correct state of database from the backup and
history of transactions.

« Monitoring tools:

Which monitors the performance so that internal schema can be changed and
database access can be optimized.

» File organization:
Which allows restructuring the data from one type to another?

1.2 Difference between File system & DBMS

File System

1. File system is a collection of data. Any management with the file system, user has to
write the procedures

2. File system gives the details of the data representation and Storage of data.
3. In File system storing and retrieving of data cannot be done efficiently.
information5.Filesystemdoesn’tprovidecrashrecoverymechanim. .

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M 6

Eg. While we are entering some data into the file if System crashes then content of the
file is lost.

6. Protecting a file under file system is very difficult.

DBMS

1. DBMS is a collection of data nd user is not required to write the procedures for

managing the database.
2. DBMS provides an abstract view of data that hides the details.

3. DBMS is efficient to use since there are wide varieties of sophisticated techniques to
store and retrieve the data.

4. DBMS takes care of Concurrent access using some form of locking.

5. DBMS has crash recovery mechanism, DBMS protects user from the effects of system
failures.

6. DBMS has a good protection mechanism.

DBMS = Database Management System

RDBMS = Relational Database Management System

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M 7

system used to manage

A database management system is, well, a databases.
relational database management system is database management system used
A a to

manage relational databases. A relational database is one where tables of data can
have relationships based on primary and foreign keys.

1.3 Advantages of DBMS.

Due to its centralized nature, the database system can overe the
disadvantages of the

DBMS provides the abstract view that hides these details. file System-based
syste

1. Data independency:

Application program should not be exposed to details of data representation
and storage

2. Efficient data access-tachnjquestotore and retrieve data efficiently.
3. Data integrity and security:

Data is accessed through DBMS, it can enforce integrity
constraints. E.g.: Inserting salary inform.tion for an
employee.

4. Data Administration :
When users share data, centralizing the data is an important task,
Experience professionals can minimize data redundancy and perform fine

tuning which reduces retrieval time.

5. Concurrent access and Crash recovery: . DBMS utilizes a variety of
sophisticated

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M 8

DBMS schedules concurrent access to the data. DBMS protects user from the
effects of system failure.

6. Reduced application development time.

DBMS supports important functions that are mon to many applications.

1.4 Functions of DBMS

(1 Data Definition: The DBMS provides functions to define the structure of
the data in the application. These include defining and modifying the
record structure, the type and size of fields and the various constraints to
be satisfied by the data in

each field.

(1 Data Manipulation: Once the data structure is defined, data needs to be
inserted, modified or deleted. These functions which perform these
operations are part of DBMS. These functions can handle plashud and
unplashuddata manipulation needs. Plashud queries are those which form
part of the application. Unplashud

queries are ad-hoc queries which performed on a need basis.

[J Data Security & Integrity: The DBMS contains modules which
handle the

security and integrity of data in the
application. :

[0 Data Recovery and Concurrency:Recoveryofthe data after system failure
and concurrent access of records by multiple users is Iso handled by
DBMS.

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M

(1 Data Dictionary Maintenance: Maintaining the data dictionary which
contains the data definition of the application is also one of the functions
of DBMS.

(1 Performance: Optimizing the performance of the queries is one of the
important functions of DBMS. .

1.5 Role of Database Administrator.

Typically there are three types of users for a DBMS:

1.

The END User who uses the application. Ultimately he is the one who
actually puts the data into the system into use in business. This user need
not know anything about the organization of data in the physical level.

The Application Programmer who develops the application programs.
He/She has more knowledge about the data and its structure. He/she can
manipulate the data using his/her programs. He/she also need not have
access and knowledge of the plete data in the system.

The Data base Administrator (DBA) who is like the super-user of the
system.

The role of DBA is very important and is defined by the following functions.

0

0

Defining the schema: The DBA defines the schema which contains the
structure of the data in the application. The DBA determines what data
needs to be present in the system and how this data has to be presented
and organized.

Liaising with users: The DBA needs to interact continuously with the
users to understand the data in the system and its use.

Defining Security & Integrity checks: The DBA finds about the access
restrictions to be defined and defines security checks accordingly. Data
for backup and recovery. Defining backup proedureincludes specifying
what data is to be backed up, the periodicity.of taking backups and also the
medium and storage place to back p data.

Integrity checks are defined by the DBA.

Defining Backup/Recovery Procedures: The DBA also defines

procedures

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M

10

(1 Monitoring performance: The DBA has to continuously monitor
the performance of the queries and t ke the measures to optimize
all the
queries in the application.

1.6 Simplified Database System

Environment

Users/Programmers

Database
System Y
Application Programs/Queries
DBEBMS
Software

Software to Process
Queries/Programs

v

Software to Access
Stored Data

7 =
e

Stored Database
Definition

Stored Database
(Meta-Data)

Figure 1.1
A simplified database
system environment.

A database management system(DBMS)iscollectionofprograms that enables users
to create and maintain database. The DBMS is general purpose software system
that .facilitates the processofdefining, constructing, manipulating and sharing
databases

among various users and applications. Defining a database specifying the database
involves specifying the data types, constraints and structures of the data to be
stored in the database. The descriptive information is also stored in the database
in the form database catalog or dictionary; it is called meta-data.

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M 11

Manipulating the data includes the querrying the database to retrieve the specific
data. An application program accesses the database by sending the qurries or
requests for data to DBMS.

The important function provided by the DBMS includes protecting the database
and maintain the database.
1.7 Example of a Database (with a Conceptual Data Model)
* Mini-world for the example:
Part of a UNIVERSITY environment.
« Some mini-world entities:
STUDENTs COURSEs
SECTIONSs (of COURSES)

(academic) DEPARTMENTS

INSTRUCTORSs

Example of a Database (with a Conceptual Data Model)

« Some mini-worldrelationships:
SECTIONS are of specific COURSES
STUDENTS take SECTIONSs
COURSEs have prerequisite COURSES
INSTRUCTORS teach SECTIONs
COURSEs are offered by DEPARTMENTS

STUDENTSs major in DEPARTMENTS

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M

12

Example of a simple Database

COURSE
Course_name Course_number | Credd_hours | Department
Intro to Computer Scence CS1310 4 CcS
Data Structures C$3320 * cs
Owscrote Mathematics MATH2410 3 MATH
Database CS3380 3 cs
SECTION
a5 MATH2410 Fall 04 King
92 CS1310 Fall 04 Anderson
102 CS3320 Spring 05 Knuth
12 MATH2410 Fall 05 Chang
19 CS1310 Fall 05 Anderson
135 CS3380 Fall 05 Stone
Example of a simple Database
GRADE_REPORT
Student_number | Section_idensfer | Grade
17 112 B
17 119 C
8 85 A
8 92 A
8 102 B
8 135 A

B std1 - Notepad

Edwards Julia
Smith Jerry
Teague danize

C Little Rock 2 145637205 Marti
BosTon 4 194304428 Allen
GCkiahoma city

n Suan
Nancy

e 392
423 Lakef

HazeTwood D
ront br.

Example of
a Student File

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M

14

Example of a Student File

B std2 - Notepad
File Edit Format View Help

oBS.

0

122874839 Edwards Julia
145637205 Martin Duanna
167294367 Smith Jerry
104304428 Allen Nancy
234355167 Teague Denise

LASTNAME FRSTNAME ADDRESS

392 Hazelwoo

2450 Quincy Ct. Apt. C
d or.

111 Lincoln Ave.
423 Lakefront or.
556 Cherokee Rd.

cITy

Little Rock
New Hartford
oston
Deerborne
oklahama city

Example of a simplified database catalog

Note: Major_type is defined as an enumerared type with all known majors. XXXXNNNN

RELATIONS
Relation_name No_of_columns

STUDENT 4
COURSE 4
SECTION 5
GRADE_REPORT 3
PREREQUISITE 2

COLUMNS

Column_name Data_type Belongs_to_relation

Name Character (30) STUDENT
Student_number Character (4) STUDENT
Class Integer (1) STUDENT
Major Major_type STUDENT
Course_name Character (10) COURSE
Course_number XXXXNNNN COURSE
Prerequisite_number XXXXNNNN PREREQUISITE

is used to define a type with four alpha characters followed by four digits

1.8 Architecture of DBMS .

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M

Figure 1.3

An example of a
database catalog for the
database in Figure 1.2.

15

external schema

conceptual schema

internal schema

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M

16

A monly used views of data approach is the three-level architecture suggested by
ANSI/SPARC (American National Standards Institute/Standards Planning and
Requirements mittee). ANSI/SPARC produced an interim report in 1972 followed by a final
report in 1977. The reports proposed an architectural framework for databases. Under this
approach, a database is considered as containing data about an enterprise. The three levels
of the architecture are three different views of the data:

External - individual user view

Conceptual - munity user view

Internal - physical or storage view
The three level database architecture allows a clear separationoftheinforation meaning
(conceptual view) from the external data representation and fr the physical data

structure layout. A database system that is able to separate.the three different views of data
is likely to be flexible andadaptable. Thisflexibility and adaptability is data independence
that we have discussed earlier.

We now briefly discuss the three different views.

The external level is the view that the individual user of the database has. This view is often
a restricted view of the.dt se and the same database may provide a number of different views
fordifferent classes of users. In general, the end users and even the application programmers
are only interested in a subset of the database. For example, a department head may only be
interested in the departmental finances and student enrolments but not the library
information. The librarian would not be expected to have any interest in the information
about academic staff. The payroll office would have no interest in student enrolments.

The conceptual view is the information model of the enterprise and contains the view of the
whole enterprise without any concern for the physical implementation. This view is
normally more stable than the other two views. In a database, it may be desirable to change
the internal view to improve performance while there has been no change in the

conceptual view of the database. The conceptual view is the overall munity view of the
database and it includes all the information that is going to be represented in the database.
The conceptual view is defined by the conceptual schema which includes definitions of
each of the various types of data.

The internal view is the view about the actual physical storage of data. It tells us what data
is stored in the database and how. At least the following aspects are considered at this level:

Storage allocation e.g. B-trees, hashing etc.

Access paths e.g. specification of primary and secondary keys, indexes and
pointers and sequencing.

Miscellaneous e.g. data pression and encryption .techniques, optimization of
the internal structures.

Efficiency considerations are the most important at this level and the data structures
are chosen to provide an efficient database. The internal view does not deal

with the physical devices directly. In tead it view physical device as a collection of
physical s and allocates spce in terms of logical s.

The separation of the conceptual view from the internal view enables us to
provide a logicaldescription of the database without the need to specify physical structures.
This is often called physical data independence. Separating the external views from the
conceptual view enables us to change the conceptual view without affecting the external
views. This separation is sometimes called logical data independence.

Assuming the three level view of the database, a number of mappings are needed to
enable the users working with one of the external views. For example, the payroll office
may have an external view of the database that consists of the following information only:

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M 18

Staff number, name and address.

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M

19

Staff tax information e.g. number of dependents.
Staff bank information where salary is deposited.

Staff employment status, salary level, leave information etc.

The conceptual view of the database may contain academic staff, general staff, casual
staff etc. A mapping will need to be created where all the staff in the different categories
arebined into one category for the payroll office. The conceptual view would include
information about each staff's position, the date employment started, full-time or part-time
etc. This will need to be mapped to the salary level for the salary office. Also, if there is
some change in the conceptual view, the external view can stay the same if the

mapping is changed.

1.9 Data Independence

Data independence can be defined as the capacity to change the schema at one
level without changing the schema at next higher level. There are two types of data

Independence. They are

1. Logical data independence.
2. Physical data independence.

1. Logical data independence is the capacity to change the conceptual schema
without having to change the external schema.
2. Physical data independence is the capacity to change the internal schema without

changing the conceptual schema.
When not to use a DBMS

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M 20

« Main inhibitors (costs) of using a DBMS:

» High initial investment and possible need for additional hardware.

» Overhead for providing generality, security, concurrency control, recovery, and
integrity functions When a DBMS may be unnecessary:

+ If the database and applications are simple, well defined and not expected to

change.

+ If there are stringent real-time requirements that may not be met because of
DBMS overhead.

« Ifaccess to data by multiple users is not required.
* When no DBMS may suffice:

« If the database system is not able to handle the plexity of data because of
modeling limitations

If the database users need special operations not supported by the DBMS.

1.10 Types of Databases and Database Applications

» Traditional Applications:

Numeric and Textual Databases
« More Recent Applications:
Multimedia Databases
Geographic Information Systems (GIS)
Data Warehouses

Real-time and Active Databases

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M

21

Many other applications

1.11 Data Model

A model is an abstraction process that hides superfluous details. Data modeling is

used for representing entities of interest and their relationship in the database.

Data model and different types of Data Model

Data model is a collection of concepts that can be used to describe the structure of a
database which provides the necessary means to achieve the abstraction. The structure of
a database means that holds the data.

data types
relationships

constraints

Types of Data Models

[EEN

. High Level- Conceptual data model.
2. Low Level — Physical data model.
3. Relational or Representational

4. Object-oriented Data Models:

5. Object-Relational Models:
1. High Level-conceptual data model: User level data del is the high level or
conceptual model. This provides concepts that are lose to the way that many

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M 22

users perceive data. :
2 .Low level-Physical data model:providesconceptthat describe the details of how data
is stored in the puter model. Low level dat model is only for puter
specialists not for end-user.

3. Representation data model: It is between High level & Low level data model . Which
providesconcepts that may be understood by end-user but that are not too
far removed from the ay data is organized by within the puter.

The most mon data models are

1. Relational Model
The Relational Model uses a collection of tables both data and the relationship
among those data. Each table have multiple column and each column has a unique
name .

Relational database prising of two tables

Customer —Table.

Customer-Name | Security Address City Account-
Number Number
Preethi 111-222-3456 | Yelhanka Bangalore A-101
Sharan 111-222-3457 | Hebbal Bangalore A-125
Preethi 112-123-9878 | Jaynagar Bangalore A-456
Arun 123-987-9909 | MG road Bangalore A-987
Preethi 111-222-3456 | Yelhanka Bangalore A-111
Rocky 222-232-0987 | Sanjay Nagar Bangalore A-111

Account —Table

Account-Number Balance
A-101 1000.00
A-125 1200.00

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M 23

| A-456 15000.00
A-987 1234.00
A-111 3000.00

Customer Preethi and Rocky share the same account number A-111

Advantages

1. The main advantage of this model is its bility to represent data in a simplified
format.

2. The process of manipulating record is simplified with the use of certain key
attributes used to retrieve data.

3. Representation of different types of relationship i possible with this model.

2. Network Model
The data in the net ork model are represented by collection of records and
relationships among data are represented by links, which can be viewed as pointers.

Preethi 111-222-3456| yelhanka | Bangalore

— | |
L» |A-101 |1000.00 |

A-111 3000.00
The records in the database are organized as collection of arbitrary groups.

Advantages:

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M 24

1. Representation of relationship between entities is implemented using pointers
which allows the representation of arbitrary relationship

2. Unlike the hierarchical model it is easy.

3. data manipulation can be done easily with this model.

. Hierarchical Model likerelationships: .
each parent can have many children but each child only has one parent. All attributes
of a specific record are listed under an entity type.

1. The representation of records is done using an ordered tree, which is natural
method of implementation of one—to-many relationships.

2. Proper ordering of the tree results in easier and faster retrieval of records.

3. Allows the use of virtual records. This result in a stable database especially when
modification of the data base is made.

4.0 Object-oriented Data Models

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M

« Several models have been proposed for implementing in a database system.

« One set prises models of persistent O-O Programming Languages such as
C++ (e.g., in OBJECTSTORE or VERSANT), and Smalltalk (e.g., in
GEMSTONE).

25

« Additionally, systems like O2, ORION (at MCC —then ITASCA), IRIS (at H.P.-
used in Open OODB).

5.0 Object-Relational Models
* Most Recent Trend. Started with Informix .
. Universal Server.
+ Relational systems incorporate concepts from object databases leading to object-
relational.

* Object Database Standard: ODMG-93, ODMG-version 2.0,0DMG-version 3.0.

» Exemplified in the latest versions of Oracle-10i,DB2, and SQL Server and other
DBMSs.

« Standards included in.SQL-99 and expected to be enhanced in future SQL
standards.

The description of a database.

Includes descriptions of the database structure, data types, and the constraints on the
database.

» Schema Diagram:

An illustrative display of (most aspects of) a database schema.
» Schema Construct:

A ponent of the schema or an object within the schema, e.g., STUDENT, COURSE.
+ Database State:

The actual data stored in a database at a

particular moment in time. This includes the collection of all the data in the
database. Also called database instance (or occurrence or snapshot).

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M

+ The term instance is also applied to individual database ponents, e.g.
recordinstance, table instance, entity instance

Database Schema vs. Database State
« Database State:
Refers to the content of a database at a moment in time.

 Initial Database State:
Refers to the database state when it is initially loaded into .the system.

+ Valid State:
A state that satisfies the structure and constraints of the database.
+ Distinction
The database schema changesvery infrequently.
The database state changes every time the database is updated
. * Schema

isalsocalled intension
» State is also called extension

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M 27

Example of a Database Schema

STUDENT Figure 2.1
Schema diagram for the

database in Figure 1.2.

Name | Student_number | Class | Major

COURSE
Course_name | Course_number | Credit_hours | Department

PREREQUISITE
Course_number | Prerequisite_number

SECTION
Section_identifier | Course_number | Semester | Year | Instructor

GRADE_REPORT
Student_number | Section_identifier | Grade

Example of a database state

COURSE
Course_nameo Course_number | Crede_hours | Department
Intro 1o Computer Scence CS1310 4 CS
Data Structures CS3320 4 cs
Dscrete Mathematics MATH2410 3 MATH
Database . CS3380 3 cs
SECTION
Section_identifier | Course_number | Somester Yoar Instructor
85 MATH2410 Fal 04 King
92 CS1310 Fall 04 Anderson
102 CS3320 Sprng 05 Knuth
12 MATH2410 Fai 05 | Chang
119 CS1310 Fall 0% Anderson
135 CS3380 Fall 05 Stone

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M 28

GRADE REPORT

Student_number | Secton dantber | Geads
17 12 B
ki 118 -
B 88 A
8 97 A
B 102 8
= 1 — ——
PREREQUISITE
Course_number | Presequisite_numbee
Figure 12 _CSme0 | G510
#A datnbase el stores SR80 MATHZL 10
Ir:-;'::;'f course Csaxm | Csiai0

« Data Definition Language (DDL)
« Data Manipulation Language (DML)

« High-Level or Non-procedural Languages: These include the relational language
SQL.

« May be usedinastandalone way or may be embedded in a programming
language

« Low Level or Procedural Languages: .DBMS Languages

These must be embedded in a programming language

Data Definition Language (DDL)

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M

Used by the DBA and database designers to specify the conceptual schema of a
database.

* In many DBMSs, the DDL is also used to define internal and external schemas
(views).

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M

30

* Insome DBMSs, separate storage definition language (SDL) and
viewdefinition language (VDL) are used to define internal and external

schemas.

« SDL is typically realized via DBMS mands provided to the DBA and
database designers

Data Manipulation Language (DML)

Used to specify database retrievals and updates DML mands (data sublanguage) can be
embedded in a general-purpose programming language (host language), such as
COBOL, C, C++, or Java.

Types of DML

Alternatively, stand-aloneDMLmandscanbeapplied
directly (called a query

« Alibrary of functions can also be provided to access the DBMS from a
programming language

language).

« High Level or Non-procedural Language:

For example, the SQL reltional language are “set”-oriented and specify what

.datatoretrieverather than how to retrieve it.
Also called declarative languages.

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M

31

» Low Level or Procedural Language:
Retrieve data one record-at-a-time;

Constructs such as looping are needed to retrieve multiple records, along with
positioning pointers.

DBMS Interfaces
» Stand-alone query language interfaces

Example: Entering SQL queries at the DBMS interactive SQL interface (e.g.
SQL*Plus in ORACLE)

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M 32

Programmer interfaces for embedding DML in programming languages
» User-friendly interfaces

» Menu-based, forms-based, graphics-based, etc.

DBMS Programming Language Interfaces

. Programmer
languages interfaces for embedding
Database Programming Language Approach: ~ DML in a programming

languages:

+ Embedded Approach: e.g embedded SQL (for C,C++, etc.), SQLJ (for Java)
» Procedure Call Approach: e.g. JDBC for Java, ODBC for other programming
* e.g. ORACLE has PL/SQL, a programming language basedponentssNSQL;

language incorporates SQL and its data types as integral

User-Friendly DBMS Interfaces
« Menu-based, popular for browsing on the web
» Forms-based, designed for naive users
» Graphics-based (Point and C ick, Drag and Drop, etc.)
» Natural language: requests in written English
« binations of the above:For example, both menus and forms usedextensively

in Web database interfaces
Other DBMS Interfaces

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M

» Speech as Input and Output

Web Browser as an interface

» Parametric interfaces, e.g., bank tellers using function keys.

+ Interfaces for the DBA:

« Creating user accounts, granting authorizations
« Setting system parameters

» Changing schemas or access paths

2.0 The database system environment

The DBMS is a plex software system.

Typical DBMS ponent Modules

Users: DBEA Stat Casual Users Applcation Paramadnc Usars
?f,-f" K\, l Progeammars
Prepare I " T L
‘ R | ' Frleged 1 [Interactive Apphication |
Statesments | Commands | Cruery Frograms J
Dil. ‘ ']+ » Huiat
= Chsary Beatiavanias | Larsguasgpe
Conpiie Caompslar Precompier fausly 2 =

|

The figure is dividedintotwo halves. The top half of the figure refers to the various users
of the database environment and their interfaces. The lower half shows the internals of the
DBMS responsible for storage of data and processing of transaction.

The database and the DBMS catalog are usually stored on disk.Access to the disk is
primarily controlled by operating system(OS).which inclues disk input/Output.A higher
level stored data manager module of DBMS controls access to DBMS information that is
stored on the disk.

If we consider the top half of the figure, It shows interfaces to DBA staff, casual users,
application programmers and parametric users

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M 35

The DDL piler processes schema definitions, specified in the DDL,and stores the
description of the schema in the DBMS Catalog.. The catalog includes information such as
names and sizes of the sizes of the files, data types of data of data items. Storage details of
each file, mapping information among schemas and constraints.

Casual users and persons with occasional need of information from database interact using
some for of interface which is interactive query interface. The queries are parsed, analysed
for correctness of the operations for

the model. the names of the data elements and so on by a query mpiler that piles . them
into internal form. The internalqueryissubjectedtoqueryoptimization..The query optimizer
is concerned with rearrangement and possible recording of operations,

eliminations of redundancies.

Application programmer writes programs in host languages. The prepiler extracts DML
mands from an application program

2.1Centralized and Client-Server DBMS Architectures
* Dbineseverythinginto single system including- DBMS software, hardware,
application programs, and user interface processing software.
« User can still connect through a remote terminal — however, all processing is done
at centralized site. .CentralizedDBMS:

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M 36

A Physical Centralized Architecture

Figure 2.4
Terminals | Display Display (= | Display A physical centralized
Monitor Monitor Monitor architecture.
[Network I
@)
Application Terminal Text
Programs Display Control Editors
DBMS Compilers
Software
Operating System
i System Bus N
| | |
Controller Controller Controller
1
Iﬂ- . 17O Devices
[Memory] [Disk I (Printers,
_ Hardware/Firmware Tape Drives, , - 2 J
& 2

main processing for all system.functions,includinguserapplication programs and user
interface programs as ell all DBMS functionality. The reason was that most users
Architectures for DBMS have followed trends similar to those generating puter

system architectures. Earlier architectures used mainframes puters to provide the

accessed such systemsviaputer terminals that did not have processing power and only
provided display capabilities. Therefore all processing was performed remotely on the
puter system, and only display information and controls were sent from the puter to the
display terminals, which were connected to central puter via various types of
munication networks.

As prices of hardware declined, most users replaced their terminals with PCs and
workstations. At first database systems used these puters similarly to how they have
used is play terminals, so that DBMS itself was still a Centralized DBMS in which all

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M 37

the DBMS functionality, application program execution and user interface processing

were carried out on one Machine.
Basic 2-tier Client-Server Architectures
» Specialized Servers with Specialized functions
» Print server
* File server
« DBMS server
« Web server
« Email server
» Clients can access the specialized servers as needed

Logical two-tierclient server architecture

Figure 2.5 Client Client Client
Logical two-tier
client/server Network
architecture.
Print File DBMS
Server Server Server

Clients

« Provide appropriate interfacesthroughclientsoftware module to access and

« Clientsmaybediskless machines or PCs or Workstations with disks with only

the client software installed.

« Connected to the servers via some form of a network.

* (LAN: local area network, wireless network, etc.)utilizethevariousserver

.resources.

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M

38

DBMS Server
» Provides database query and transaction services to the clients

* Relational DBMS servers are often called SQL servers, query servers, or
transaction servers

» Applications running on clients utilize an Application Program Interface (API)
toaccess server databases via standard interface such as:

» ODBC: Open Database Connectivity standard
« JDBC: for Java programming access

« Client and server must install appropriate client module and server module
software for ODBC or JDBC

Two Tier Client-Server Architecture

« A client program may connect to several DBMSs, sometimes called the data
sources.

» Ingeneral, data sources can be files or other non-DBMS software that manages
data. Other variations of clients are possible: e.g., insomeobject DBMSs, more
functionality is transferred to clients including data dictionary functions,
optimization and recovery across multiple servers, etc,

Three Tier Client-Server Architecture

« mon for Web applications

« Intermediate Layer called Application Server or Web Server:

« Stores the web connectivity software and the business logic part of the application
used to access the corresponding data from the database server

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M 39

» Acts like a conduit for sending partially processed data between the database server
and the client.

» Three-tier Architecture Can Enhance Security:

» Database server only accessible via middle tier
+ Clients cannot directly access database server .

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M

40

Figure 2.7 [GUI, } { Presentation J

used nomenclatures.

Logical three-ti Client
ogieal threewtier en Web Interface Layer
client/server architecture,
with a couple of commonly i
Application Server Application Businees
or Programs, iocieliaver
Web Server Web Pages gie ey
Database Database Datapase
Server Management Services

Layer

System

(a) (b)

Based on the data model used
Traditional: Relational, Network, Hierarchical.

Emerging: Object-oriented, Object-relational.
Other classifications .

Single-user(typically used with personal puters) vs. multi-user (most DBMSSs).

Centralized (uses a single puter with one database) vs. distributed (uses multiple
puters, multiple databases) .ClassificationofDBMSs

Variations of Distributed DBMSs (DDBMSs)

Homogeneous DDBMS

Heterogeneous DDBMS

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M 41

* Federated or Multidatabase Systems

» Distributed Database Systems have now e to be known as client-server based
database systems because:

» They do not support a totally distributed environment, but rather a set of database
servers supporting a set of clients.

Cost considerations for DBMSs

+ Cost Range: from free open-source systems to configurations costing millions of
dollars

« Examples of free relational DBMSs: MySQL, PostgreSQL, others

Entity-Relationship Model

Introduction to ER Model

ER model is represents real world situations using concepts, which are monly used by
people. It allows defining a representation of the real world at logical level. ER model has

no facilities to describe machine-related aspects.

In ER model the logical structure of data is captured by indicating the grouping of data into
entities. The ER model also supports a top-down approach by which details can be

given in successive stages.

Entity: An entity is something whichisdescribedinthedatabase by storing its data, itmay

be a concrete entity a conceptual entity.

Entity set: An entity set is a collection of similar entities.

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M 42

Attribute: An attribute describes property associated with entities. Attribute will have aname and a

value for each entity .

Domain: A domaindefines a set of permitted values for a attribute

SYMBOLS IN E-R DIAGRAM

The ER model is represented using different symbols as shown in Fig .a

Figure 3. -4
Srrerngery ol Thes

wrtatsesns e ERE

o -
TS

= < = > =]

P

e

e | 5]

Aalamay My breg@

Entty

foE T e

i azren g

Irnchertfyereg Foleraces o e

FotRiy

By B rikoaste

Poalin s irurmde soned S tarukoe e

L L

Chmrveesd MAdirdsario

Eoral FPartcapatioe o £, w &8

Carcirunibty FRates 1 R e £, B, wn &

ey P et ecimay fecary o

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M

43

Overview of Database Design Process

ol
Functsonal Reqgueramants
|
L

FAMCTHOMAL AMNALYSIS

v

e J— Figure 3.1
J A simpified diagram
(T illestrate the
Minivweorid \ rmasny phases off

database des 3

REQUIREMEMNTS
e | COLLECTION AND
ANALYSIS

Data Requiresresnts
]
L
CONCEPTUAL DESIGN

|
L

Higi-besei-TFransacton
Spectcation

T DBMS-indapasdamnt -,

.................... s 5 5 B A

l DBMS-spacific ™

e,

AFPLICGATION PROGRAM
DESIHGMN

i —

r

E&xzwiln the data model of a speciic DBMS)

f‘w‘ lht‘l‘llma‘] S‘_ﬁﬂl =
[k & high-level data model)
|

L
{ LPGICAL DESIGM

(DATA MODEL MAPPING)

1
L
Logical (Conceptuall Schema

~ v
Ty PHYSICAL DESIGMN

v

Internal Schema

TRANSASTION | .o
IMPLEMEMTATION

v

Applicaton Proggrams

Example PANY D

We need to createa database schema design based on the following (simplified)

requirementsof the PANY Database:

The pany is organized into DEPARTMENTS.

Each department has a name, number and an employee who manages the department.

We keep track of the start date of the department

manager. A department may have several locations.

Each department controls a number of

PROJECTs. Each project has a unique name, unique number and is located at a single

location.

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M 44

We store each EMPLOYEE’s social security number, address, salary, sex, and birth date.

Each employee works for one department but may work on several projects.

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M 45

We keep track of the number of hours per week that an employee currently works on each
project.

We also keep track of the direct supervisor of each employee.
Each employee may have a number of DEPENDENTS.

For each dependent, we keep track of their name, sex, birth date, and relationship to the
employee.

ER Model Concepts

Entities and Attributes

For example the EMPLOYEE John Smith, the Research DEPARTMENT, . theProductX PROJECT.
Entities are specific objects or things in the mini-world that are represented in the
database.

Attributes are properties used todescribeanentit.

For example an EMPLOYEE entity may have the attributes Name, SSN, Address, Sex,
BirthDate .

A specific entity will have a « value for each of its attributes.

For example a specificemployee entity may have Name='John Smith', SSN='123456789',
Address ='731, Fondren, Houston, TX', Sex="M', BirthDate='"09-JAN-55°

Each attribute has a value set (or data type) associated with it — e.g. integer, string,
subrange, enumerated type,

Types of Attributes
There are two types of Attributes
Simple

Each entity has a single atomic value for the attribute.
For example, SSN or Sex.

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M 46

posite

The attribute may be posed of several ponents. For example:
Address(Apt#, Houset#, Street, City, State, ZipCode, Country), or Name(FirstName,
MiddleName, LastName).

position may form a hierarchy where some ponents are themselves posite.

Multi-valued

An entity may have multiple values for that attribute. For example,Color of a CAR or
Previous Degrees of a STUDENT.

Denoted as {Color} or {Previous Degrees}.

In general, posite and multiallsyl]abus—Valuedattributesmaybene ted arbitrarily to any number
of levels, although this is rare.

For example, Previous Degrees of STUDENT is posite multi-valued attribute
denoted by
{Previous Degrees (College, Year, Degree, Field)}

Multiple Previous Degrees values can exi t. Each ha foursubponent attributes:
College, Year, Degree, Field

Example of a posite attribute
Address
Street_address City State Zip
Figure 3.4
A hierarchy of
, y ; Number Street Apartment_number

composite attributes.

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M 47

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M

48

Entity Types and Key Attributes

Entities with the same basic attributes are grouped or typed into an entity
type. For example, the entity type EMPLOYEE and PROJECT.

An attribute of an entity type for which each entity must have a unique value is
called a key attribute of the entity type.

For example, SSN of EMPLOYEE.

A key attribute may be posite.
Vehicle Tag Number is a key of the CAR entity type with (Number,

State).

An entity type may have more than one key. = ponents

The CAR entity type may have two keys:
VehicleldentificationNumber (popularly called VIN)
VehicleTagNumber (Number, State), icense plate number.

Each key is underlined
Displaying an Entity type

In ER diagrams, an entity type is displayed in a rectangular box
Attributes aredisplayed in ovals.

Each attribute is connected to its entity type

ponents of a posite attribute are connected to the oval representing the posite
attribute.

Each key attribute is underlined.

Multivalued attributes displayed in double ovals.

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M

49

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M

50

Entity Type CAR with two keys and a corresponding Entity

Set
(a) Figure 3.7
The CAR entity type with two
key attributes, Registration and
Vehicle_id. (a) ER diagram
notation. (b) Entity set with
three entities.
(b) CAR
Registration (Number, State), Vehicle_id, Make, Model, Year, {Color}
(CARy . B
((ABC 128, TEXAS), TK629, Ford Mustang, convertible, 2004 {red, black})
CAR,
((ABC 123, NEW YORK), WP9872, Nissan Maxima, 4-door, 2005, {blue})
CAR,
((VSY 720, TEXAS), TD729, Chrysler LeBaron, 4-door, 2002, {white, blue})
Entity Set J
entity set.

Each entity type will have » cOllection of entities stored in the database Called the
The above example sho s three CAR entity instances in the entity set for CAR

Same name (CAR)used to refer to both the entity type and the entity set.

Entity set is the current state of the entities of thattype that are stored in the database.

Initial Design of Entity Types for the PANY Database Schema

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M 51

Based on the requirements, we can identify four initial entity types in the PANY
database:

DEPARTMENT

PROJECT

EMPLOYEE

DEPENDENT
Their initial design is shown below.

The initial attributes shown are derived from the requirements description

Y, 2y

@?@@1 DEPARTMENT | banager)

B ==
Qh_nager_slmm

o

PROJECT

Initial Design of Entity Typesfor the PANY Database Schema

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M

53

Refining the initial design by introducing relationships
The initial design is typically not plete. Some aspects in the requirements will be

represented as relationships.

ER model has three main concepts:
Entities (and their entity types and entity sets)

Attributes (simple, posite, multi valued)

Relationships and Relationship Types
1<)
PROJECTSs participate, or theMANAGESrelationshiptype in which EMPLOYEEs and

DEPARTMENTS participate.

Relationships of the same type are grouped or typed into a relationship type.
For example, the WORKS ON re ationship type in which EMPLOYEEs and

The degree ofarelationship type is the number of participating entity type.

Both MANAGES and WORKS ON are binary relationships.

Relationship instances of the WORKS FOR N:1 relationship
between EMPLOYEE and DEPARTMENT

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M 54

EMPLOYEE WORKS_FOR DEPARTMENT

f

e ® / d|

e \ / 2 7
58—

o
€3 r

3 s

€4

-
o

Figure 3.9

Some instances in the
WORKS_FOR relationship
set, which represents a rela-
tionship type WORKS_FOR
between EMPLOYEE and
DEPARTMENT.

Relationship instances of the M:N WORKS ON relationship between

EMPLOYEE and PROJECT

EMPLOYEE . WORKS_ON

PROJECT

Figure 3.13
Rel An M:N relationship,
WORKS_ON.

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M 55

Relationship Type:
Is the schema description of a relationship. Identifies the relationship name and the

participating entity types. Also identifies certain relationship constraints.

Relationship Set:

The current set of relationship instances represented in the database. The current state
of a relationship type. Previous figures displayed the relationship sets

Each instance in the set relates individual participating entities — one from each

participating entity type.

In ER diagrams, we represent the relationship type as follows:

Diamond-shaped box is used to display relationship type.
Connected to the participating entity types via straight lines.

Refining the PANY databaseschemaby introducing

relationships

By examining the requirements, six relationship types are identified.

All are binaryrelationships(degree 2)

Listed below with their participating entity types:

WORKS FOR (between EMPLOYEE, DEPARTMENT)
MANAGES (also between EMPLOYEE,

DEPARTMENT) CONTROLS (between DEPARTMENT,
PROJECT) WORKS ON (between EMPLOYEE,
PROJECT) SUPERVISION (between EMPLOYEE (as
subordinate), EMPLOYEE (as supervisor))
DEPENDENTS_OF (between EMPLOYEE, DEPENDENT)

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M 56

ER DIAGRAM - Relationship Types are: WORKS FOR,
MANAGES, WORKS_ON, CONTROLS,
SUPERVISION, DEPENDENTS OF

- - -
S x&/DEPEHDEHTS OF), . Mumbes >
|| DEPENDEMNT]l
RN e . " "W =,
{7 Pa T Sex ¢ Bath_date ¢ Relationship)

Figure 3.2
#n ER schema diagram for the COMPARNY database. The diagrammalic notaticn
is ntroduced gradually theoughout this chapter.

Relationship Types

In the refineddesign, some attributes from the initial entity types are refined into
relationships:

Manager of DEPARTMENT -> MANAGES
Works on of EMPLOYEE -> WORKS ON
Department of EMPLOYEE -> WORKS FOR etc

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M 57

In general, more than one relationship type can exist between the same participating
entity types MANAGES and WORKS FOR are distinct relationship types between
EMPLOYEE and DEPARTMENT

Different meanings and different relationship instances.

Recursive Relationship Type

An relationship type whosewith the same participating entity type in distinct roles
Example: In the SUPERVISION relationship EMPLOYEE participates twice in two

distinct roles:

supervisor (or boss) role

supervisee (or subordinate) role

Each relationship instance relates two distinct EMPLOYEE entities:

One employee in supervisor role

One employee in supervisee role

Weak Entity Types

An entity that does not have Kkey attribute. A weak entity must participate in an
identifying relationship type with an owner or identifying entity type.
Entities are identified by the binationof: A partial key of

the weak entity type

The particular entity they are re ated to in the identifying entity type.

Example:

A DEPENDENT entityis identified by the dependent’s first name, and the specific
EMPLOYEE with whom the dependent is related.

Name of DEPENDENT is the partial key.
DEPENDENT is a weak entity type.

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M

EMPLOYEE is its identifying entity type via the identifying relationship
type DEPENDENT_ OF

Constraints on Relationships
Constraints on Relationship Types

(Also known as ratio constraints)

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M

59

DBMS notes

Module-2

Cardinality Ratio (specifies maximum participation)

One-to-one (1:1)

One-to-many (1:N) or Many-to-one (N:1) Many-

to-many (M:N)

Existence Dependency Constraint (specifies minimum participation) (also called
participation constraint)

zero (optional participation, not existence-dependent)

one or more (mandatory participation, existence-dependent)

Many-to-one (N:1) Relationship

EMPLOYEE WORKS_FOR DEPARTMENT
£
i / f—=p di
€9 0 ‘rz_ ’ ‘dg
€5 r /

3 da
€4 /
Ny 4N
€g
€7 ~
: ’.,

Many-to-many (M:N) Relationship

DrakshaveniG ,Dept.of MCA,BMSIT&M

Figure 3.9

Some instances in the
WORKS_FOR relationship
set, which represents a rela-
tionship type WORKS_FOR
between EMPLOYEE and
DEPARTMENT.

page 60| 196

DBMS notes Module-2

EMPLOYEE WORKS ON PROJECT

Figure 3.13
An M:N relationship,
WORKS_ON.

Displaying a recursive relationship

In a recursive relationship type.
Both participations are same entity type in different roles.

For example, SUPERVISION. relationships between EMPLOYEE (in role of

supervisor orboss) and (another) EMPLOYEE (in role of subordinate or worker).
In following figure, first role participation labeled with 1 and second role

participation labeled with 2.

In ER diagram, need to display role names to distinguish participations.

A Recursive Relationship Supervision

DrakshaveniG ,Dept.of MCA,BMSIT&M page 61] 196
EMPLOYEE SUPERVISION Figure 3.11
A recursive relation-
r1 ship SUPERVISION

o between EMPLOYEE

€, 2 in the supervisor role

’QN r (1) and EMPLOYEE
Een & T o9

s SRt s Bobee oo INC, o

DBMS notes Module-2

DrakshaveniG ,Dept.of MCA,BMSIT&M page 62| 196

DBMS notes Module-2

Recursive Relationship Type is: SUPERVISION
(participation role names are shown)

|[oePenpenT

]
Figure 2.2

A ER schema diagram for the OOMPANY database. The diagrammatc notation
is ntroduced gradually throughout this chapter.

DrakshaveniG ,Dept.of MCA,BMSIT&M page 63| 196

DBMS notes Module-2

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(Affiliated to the Visvesvaraya Technological University, Belagavi)

Department of Master of Computer Applications

Subject: Database Management System

Prepared by: Drakshaveni G
Assistant Professor
Dept.of MCA
BMSIT&M

64 | 196

DBMS notes Module-2

Module -2

65 | 196

DBMS notes Module-2

The Relational Data Model and Relational Database

Relational Model Concepts

The relational Model of Data is based on the concept of a Relation. A Relation is a
mathematical concept based on the ideas of sets. The strength of the relational approach
to data management comes from the formal foundation provided by the theory of
relations. The model was first proposed by Dr. E.F. Codd of IBM in 1970 in the
following paper: "A Relational Model for Large Shared Data Banks," Communications
of the ACM, June 1970.

Informal Definitions

RELATION:

A Relation is table of values. A relation may be thought of as a set of rows. A relation
may alternately be though of as a set of columns. Each row represents a fact that
corresponds to a real-world entity or relationship. Each row has a value of an item or
set of items that uniquely identifies that row in the table. Sometimes row-ids or
sequential numbers are assigned to identify the rows in the table. Each column typically

is called by its column name or column header or attribute name.

Formal definitions

A Relation may be defined in multiple ways. The Schema of a Relation: R (A1, A2,
..... An) Relation schema R is defined over attributes Al, A2,An.

For Example -

CUSTOMER (Cust-id, Cust-name, Address, Phone#)
66 | 196

DBMS notes Module-2

Here, CUSTOMER is a relation defined over the four attributes Cust-id, Cust-name,
Address, Phone#, each of which has a domain or a set of valid values. For example,

the domain of Cust-id is 6 digit numbers.

67 | 196

DBMS notes Module-2

A tuple is an ordered set of values.Each value is derived from an appropriate domain.
Each row in the CUSTOMER table may be referred to as a tuple in the table and would
consist of four values.

<632895, "John Smith", "101 Main St. Atlanta, GA 30332", "(404) 894-2000">

is a tuple belonging to the CUSTOMER relation.
A relation may be regarded as a set of tuples (rows). Columns in a table are also called

attributes of the relation.

A domain has a logical definition: e.g.,

“USA_phone numbers” are the set of 10 digit phone numbers valid in the U.S.

A domain may have a data-type or a format defined for it. The USA phone numbers
may have a format: (ddd)-ddd-dddd where each d is a decimal digit. E.g., Dates have

various formats such as monthname, date, year or yyyy-mm-dd, or dd mm,yyyy etc.

An attribute designates the role played by the domain. E.g., the domain Date may be

used to define attributes “Invoice-date” and “Payment-date”.

The relation is formed over the cartesian product of the sets; each set has values from
a domain; that domain is used in a specific role which is conveyed by the attribute
name.
For example, attribute Cust-name is defined over the domain of strings of 25
characters. The role these strings play in the CUSTOMER relation is that of the name
of customers.
Formally,

Given R(A1, A2, , An)

r(R) € dom (A1) X dom (A2) XX dom(An)
R: schema of the relation
rof R: a specific "value" or population of R.

R is also called the intension of a relation
68 | 196

DBMS notes Module-2

r is also called the extension of a relation

Let S1={0,1}
Let S2 = {ab,c}
Let RcS1 X S2

Then for example: r(R) = {<0,a> , <0,b> , <l,c> } is one possible “state” or

“population” or “extensi on” r of the relation R, defined over domains S1 and S2. It has

three tuples.
Example
Relation name Attributes
STUDENT Name SSN HomePhone Address OfficePhone [Age| GPA

Benjamin Bayer 305-61-2435 373-1616 2918 Bluebonnet Lane null 19 | 321

Katherine Ashly 381-62-1245 3754409 125 Kirby Road null 18 | 2.89

% Dick Davidson 422-11-2320 null 3452 Elgin Road 749-1253 25 | 353

Tuples =—— | Charles Cooper 489-22-1100 376-9821 265 Lark Lane 749-6492 28 | 393

Barbara Benson 533-69-1238 839-8461 7384 Fontana Lane null 19 | 325

Characteristics of Rela tions

Ordering of tuples in a relation r(R): The tuples are not considered t o be ordered, even

though they appear to be in the tabular form.

Ordering of attributes in a relation schema R (and of values within ea ch tuple): We

will consider the attribut es in R(A1, A2, ..., An) and the values in t=<v 1, v2, ..., v>

to be ordered .

(However, a more ge neral alternative definition of relation does no t require this

ordering).

Values in a tuple: All va lues are considered atomic (indivisible). A special null value

is used to represent values that are unknown or inapplicable to certain tu ples.

Notation:

69 | 196

DBMS notes Module-2

We refer to component v alues of a tuple t by t[Ai] = vi (the value of attribute Ai for

tuple t).

Similarly, t[Au, Av, ..., Aw] refers to the subtuple of t containing t he values of

attributes Au, Av, ..., Aw, respectively.

‘ STUDENT Name SSN HomePhone Address OfficePhone Age |GPA
Dick Davidson 422-11-2320 null 3452 Elgin Road 749-1253 25 | 353
Barbara Benson 533-69-1238 839-8461 7384 Fontana Lane null 19 325
Charles Cooper 489-22-1100 376-9821 265 Lark Lane 749-6492 28 | 393
Katherine Ashly 381-62-1245 375-4409 125 Kirby Road null 18 | 2.89
Benjamin Bayer 305-61-2435 373-1616 2918 Bluebonnet Lane null 19 | 321

Relational Integrity Constraints

Constraints are conditio ns that must hold on all valid relation instances. There are
three main types of constraints:

1. Key constraints

2. Entity integrity constra ints

3. Referential integrity co nstraints

Superkey of R: A set of attributes SK of R such that no two tuples in any valid relation
instance r(R) w ill have the same value for SK. That is, fo any distinct tuples t1 and t2
inr(R), t 1[SK] # t2[SK].

Key of R: A "minimal" superkey; that is, a superkey K such that re moval of any

attribute from K results i n a set of attributes that is not a superkey.

Example: The CAR relat ion schema:

CAR(State, Reg#, Serial No, Make, Model, Year)

has two keys Keyl = {S tate, Reg#}, Key2 = {SerialNo}, which are al so superkeys.
{SerialNo, Make} is a superkey but not a key.

70 | 196

DBMS notes Module-2

If a relation has several candidate keys, one is chosen arbitrarily to b e the primary

key. The primary key attr ibutes are underlined.

Fignre 74 The CAR relation with two candidate keys:
LicenseNumber and EngineSerialNumber.

CAR LicenseNumber EngineSerialNumber Make Model Year
Texas ABC-739 ABI352 Ford Mustang 96
Florida TVP-347 B43696 Oldsmobile Cutlass 99
New York MPO-22 X83554 Oldsmobile Delta 95
California 432-TFY C4a3742 Mercedes 190-D 93
Califomia RSK-629 Y82935 Toyota Camry 93
Texas RSK-629 U028365 Jaguar XJS 28

Entity Integrity © Addison Wesey Longrman, Inc. 2000, ElmasriNavathe, Furdamentals of Database Systers, Third Edition
Relational Database Schema: A set S of relation schemas that belong to the same
database. S is the name o fthe database.

S={R1,R2, ..., Rn}

Entity Integrity: The prim ary key attributes PK of each relation schema R in S cannot
have null values in any tuple of r(R). This is because primary key valu es are used to
identify the individual tu ples.

t[PK] # null for any tuple t in r(R)

71| 196

DBMS notes Module-2

Note: Other attributes of R may be similarly constrained to disallow nul I values, even

though they are not members of the primary key.

Referential Integrity

The initial design is typic ally not complete. Some aspects in the requirem ents will

be represented as relationshi ps.

ER model has three main concepts:
Entities (and their entity types and entity sets)

Attributes (simple, composite, multi valued)

Relationships (and their relationship types and relationship sets)

Referential Integrity Constraint

Statement of the constraint

The value in the foreign key column (or columns) FK of the the referencing relation

R can be either:
(1) a value of an existing primary key value of the corresponding primary key

PK in the referenced relation R, or..
(2) anull.
In case (2), the FK in R should not be a part of its own primary key.

Other Types of Constraints

Semantic Integrity Constraints:

It is based on application semantics and cannot be expressed by the model per se E.g.,
“the max. no. of hours per employee for all projects he or she works on is 56 hrs per
week”

A constraint specification language may have to be used to express these

SQL-99 allows triggers and ASSERTIONS to allow for some of these.

72| 196

DBMS notes Module-2

Figure 7.5 Schema diagram for the COMPANY relational
database schema; the primary keys are underlined.

EMPLOYEE

| FNAME | MINIT ‘ LNAME | SSN | BDATE ‘ ADDRESS ’ SEX I SALARY | SUPERSSN | DNO |

DEPARTHMENT

‘ DNAME ‘ DNUNMBER | MGRSEN ‘ MGRSTARTDATE ‘

DEPT_LOCATIONS

’ DNUMBER | DLOCATICN |
1

PROJECT
‘ PNAME | PNUMBER ‘ PLOCATION ‘ DNUM |

WORKS_ON

| ESSN [PNO ‘ HOURS ‘

DEPENDENT
’ ESSN |DEPENDENTMNAME ‘ SEX ‘ BDATE | RELATIONSHIP ‘
I

© Addison Wesley Longman, Inc. 2000, Elmasri/Navathe, Fundamentals of Database Systems, Third Edition

Figure 7.7 Referential integrity constraints displayed
on the COMPANY relational database schema diagram.

EMPLOYEE
FNAME l MINIT |LNAME 88N ‘ BDATE ADDRESS SEK‘ SALARY SUPERSSN lDN(}I
]
DEPARTMENT
L §
’DNAME | DNUMBER | MGRSSN \ MGRETARTDATE |
DEPT LOCATICNS
DNUMBER DLOCATION
PRGJECT
1 PNAME l PRUMBER | PLOGCATION ‘ NUM ‘

T
| ESSN | DEPENDENT_NAME ‘SEX | BDATE | RELATIONSHIP

© Addison Weslcy Longman, Inc. 2000, Elmasri/Navathe, Fundamentals of Databasc Systems, Third Edition 73 | 1 9 6

DBMS notes Module-2

Figure 7.6 One possible relational database state
corresponding to the COMPANY schema.

| EMPLOYEE | FNAME | 4ANT | LNSSE B8 BISTE ADDRESS SEX | SALARY | SUPERSSN [ORD
o Sireh Y5683 | 19650140 734 Fordeen, Houslon, TX M i) Ell
Frankia Woeg BYAER ¥ R Ynes Houstn, T W AR 5
Akia Zeya BB | 1800513 3521 Casie, Sping, TX F ZiGH i
iy Vedars | (7R3 | 1941082 201 Pery, Ballairs, T £ 40 £
[enwsh Memayen | CEG394444 | 106240 575 Fre Ok, Hnbie, TX W e 5
G Ergfich | 453453453 BRA R, Heosion, TX F HOR 3
Frroedt Jabbar S876TET 560 Callas, Housicn, TH ol pae] A
JaTes Borg 8335555 450 8one, Houson, TX M 50 i
DCPT_LOCATIONS DhUMBER | GLOCATION
Haskr
s
DEPAFTMENT DRAME MGASSH WGRSTARTDATE Prfn
St XoMERS HeeaR 2 b
fowi 4 BT i
Headgarions | 13819613

WORKS ON

PROVECT PAUMBER | PLOCATICH | DiUM
1 Eebie
Z Sucaker 5
= 3 Hoastn 5
RIS m pe p
B 2 Hosmn
Be\irr! @0 e 4
BRI =
fideaned

® |
& nd

DEFEHDENI LS5 DEFENDENI_AWE | SEX LUAIE RELAIONSHF

BB Ake £ DUGHTER
MRS o E g
SRTESLEL v v

122456750 ¥ichast 4 it
1204s5ree Ace T 19851200 DAGGHTR
12456788 Slieteth £ 19BTL505 SPOUSE

© Addison Wesley Longman, Inc. 2000, Elmasri/Navathe, Fundamentals of Database Systems, Third Edition

DBMS notes Module-2

Update Operations on Relations

1. INSERT a tuple
2. DELETE a tuple
3. MODIFY a tuple

Update Operations on Relations

Integrity constraints should not be violated by the update operations. Several update

operations may have to be grouped together. Updates may propagate to cause other

updates automatically. This may be necessary to maintain integrity constraints. In

case of integrity violation, several actions can be taken:

1. Cancel the operation that causes the violation (REJECT option)

2. Perform the operation but inform the user of the violation

3. Trigger additional updates so the violation is corrected (CASCADE option, SET
NULL option)

4. Execute a user-specified error-correction routine

The Relational Algebra and Relational Calculus

Introduction

Relational Algebra is a procedural language used for manipulating relations. The
relational model gives the structure for relations so that data can be stored in that format
but relational algebra enables us to retrieve information from relations. Some advanced

SQL queries requires explicit relational algebra operations, most commonly outer join.

Relations are seen as sets of tuples, which means that no duplicates are allowed. SQL
behaves differently in some cases. Remember the SQL keyword distinct. SQL is
declarative, which means that you tell the DBMS what you want.

75 | 196

DBMS notes Module-2

Set operations

Relations in relational algebra are seen as sets of tuples, so we can use basic
set operations.

Review of concepts and operations from set theory

Set

Element

No duplicate elements
No order among the elements
Subset
Proper subset (with fewer
elements) Superset

Union

Intersection

Set Difference

Cartesian product

Relational Algebra

Relational Algebra consists of several groups of operations

Unary Relational Operations
SELECT (symbol: s (sigma))
PROJECT (symbol: [] (pi))
RENAME (symbol: p (rho))

Relational Algebra Operations From Set Theory
UNION (U), INTERSECTION (N), DIFFERENCE (or MINUS, —)
CARTESIAN PRODUCT (x)

Binary Relational Operations
JOIN (several variations of JOIN exist)
DIVISION

76 | 196

DBMS notes Module-2

Additional Relational Operations

OUTER JOINS, OUTER UNION
AGGREGATE FUNCTI ONS

Unary Relational Oper ations

SELECT (symbol: s (sigma))
PROJECT (symbol: [] (pi))
RENAME (symbol: p (rho))

SELECT

The SELECT operation (denoted by ¢ (sigma)) is used to select a subset of the tuples
from a relation based on a selection condition. The selection condition ac ts as a filter
and keeps only those tup les that satisfy the qualifying condition. Tuples satisfying
the condition are selected wh ereas the other tuples are discarded (filtered out)

Database State for COM PANY

Figure 5.7
Referential integrity constraints displayed on the COMPANY relational database schema.
EMPLOYEE

| Fname | Minit | Lname | Ssn] Bdate | Address | Sex | Salary | Super_ssn | Dno |
MH* |

DEPARTMENT
| Dname | Dnumber | Mgr_ssn| Mgr_start_date|

DEPT_LOCATIONS

| Dnumber | Dlocation |
L

PROJECT

| Pname | Pnumber | Plocation] Dnum
A

WORKS_ON

|@|m|Hours|

DEPENDENT

| Essn | Dependent_name | Sex I Bdate | Relationship
1

77 | 196

DBMS notes Module-2

* Examples:

— Select the EMPLOYEE tuples whose department number is 4:

¢ DNO =4 (EMPLOYEE)

— Select the employee tuples whose salary is greater than $30,000:
o SALARY >30,000 (EMPLOYEE)

— In general, the select operation is denoted by o<selection condition>(R)

where the symbol ¢ (sigma) is used to denote the select operator
the selection condition is a Boolean (conditional) expression specified
on the attributes of relation R
tuples that make the condition true are selected
(appear in the result of the operation)
tuples that make the condition false are filtered out

(discarded from the result of the operation)

The Boolean expression specified in <selection condition> is made up of a number
of clauses of the form:
<attribute name><comparison op><constant value>
or
<attribute name><comparison op><attribute name>
Where <attribute name> is the name of an attribute of R, <comparison op> id normally
one of the operations {=,>>=<<=1=}

Clauses can be arbitrarily connected by the Boolean operators and, or and not

* For example, To select the tuples for all employees who either work
indepartment 4 and make over $25000 per year, or work in department 5 and

make over $30000, the select operation should be:
78 | 196

DBMS notes

Module-2

(EMPLOYEE)

o (DNO=4 AND Salary>25000) OR (DNO=5 AND Salary>30000)

The followi Its rof his datal

Figure 5.8
One possible database state for the COMPANY relational database schema.
EMPLOYEE
Fname | Minit | Lname Ssn Bdate Address Sex [Salary | Super_ssn | Dno
John B Smith 123456789 |19656-01-08 | 731 Fondren, Houston, TX| M [30000 333445555 5
CFrankin | T | Wong | 333445555 | 1955-12-08 |636 Voss, Houston, TX | M |40000 |888665555 | 5 |
Alicia J Zelaya | 999887777 | 1968-01-19 [3321 Castle, Spring, TX F |25000 (987654321 4
Jennifer S Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX F |43000 (888665555 | 4
Ramesh K Narayan | 666884444 | 1962-09-15 [975 Fire Oak, Humble, TX | M |38000 |3334455556 5
Joyce A English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX F |25000 |333445555 5
Ahmad \ Jabbar | 987987887 |1969-03-29 | 980 Dallas, Houston, TX M [25000 |987654321 4
James E Borg 888665555 [1937-11-10 | 450 Stone, Houston, TX M |55000 |[NULL 1
DEPARTMENT DEPT_LOCATIONS
Dname Dnumber Mgr_ssn Mgr start_date Dnumber Dlocation
Research 5 333445555 1988-05-22 1 Houston
Administration 4 987654321 1995-01-01 4 Stafford
Headquarters 1 888665555 1981-06-19 5 Bellaire
5 Sugarland
5 Houston
WORKS_ON PROJECT
Essn Pno Hours Pname Pnumber | Plocation Dnum
1234567689 1 32,5 ProductX 1 Bellaire 5
[123456789 2 1 75 ProductY 2 Sugarland 5
666884444 3 40.0 ProductZ 3 Houston 5
453453453 1 20.0 Computerization 10 Stafford 4
453453453 2 20.0 Reorganization 20 Houston 1
333445565 2 10.0 Newbenefils 30 Stafford 4
3334456565 3 10.0
333445555 10 10.0 DEPENDENT
S98445555: | K20 || oo Essn Dependent_name | Sex | Bdate | Relationship
8e0887777 30 30.0 333445565 Alice F | 1986-04-06 | Daughler
808887777 10 | 100 333445555 | Theodore M | 19831025 | Son
987987987 10 | 350 383445555 | Joy F | 1958-05-08 | Spouse
©87987987 30 5.0 087654321 Abner M | 1942:02-28 | Spouse
987654321 30 | 200 123456789 Michael M | 1988-01-04 | Son
287654321 20 15.0 123456789 Alice F 1988-12-30 | Daughter
B88B665555 20 NULL 123456789 Elizabeth F 1967-05-05 | Spouse

Examples of applying S ELECT and PROJECT operations

DrakshaveniG

,Dept.of MCA,BMSIT&M

page 79| 196

DBMS notes

Module-2

Figure 6.1

Results of SELECT and PROJECT operations. (a) G(Dno=4 AND Salary>25000) OR (Dno=5 AND Salary>30000) (EM PLOYEE)
(B) TeLname, Frame, Satay EMPLOYEE). () Tise,, saiary(EMPLOYEE),

(@

Fname | Minit | Lname Ssn Bdate Address Sex | Salary | Super_ssn |Dno
Franklin 0l Wong 333445555 | 1955-12-08 | 638 Voss, Houston, TX M | 40000 | 888665555 | 5
Jennifer S Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX F 43000 (888665555 | 4
Ramesh K Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX| M |38000 333445555 | 5
(b) (c)

Lname Fname Salary Sex | Salary

Smith John 30000 M | 30000

Wong Franklin | 40000 M | 40000

Zelaya Alicia 25000 F 25000

Wallace | Jennifer | 43000 F 43000

Narayan | Ramesh | 38000 M | 38000

English | Joyce 25000 M | 25000

Jabbar Ahmad 25000 M | 55000

Borg James 55000

SELECT Operation P roperties

— SELECT s is commutative:

[<c0nditi0nl>(a< condition2 >(R)) =U<c0nditi0n2>(o< conditi0n1>(R))
— A cascade of SELECT operations may be repl aced by
asingle sele ction with a conjunction of all the conditions:

g

<cond1>(< cond2>(

PROJECT

DrakshaveniG

g g
<cond3 >(R)) = <cond1> AND < cond2> AND < cond3>(R)

,Dept.of MCA,BMSIT&M

page 80| 196

DBMS notes Module-2

PROJECT Operation is denoted by p (pi)
If we are interested in on ly certain attributes of relation, we use PROJEC T
This operation keeps certain columns (attributes) from a relation and disc ards

the other columns.

PROIJECT creates a vertical partitioning
The list of specified columns (attributes) is kept in each tu ple.

The other attributes in each tuple are discarded.

PREPARED
BY:
NAMRATHA K

Page 14

81| 196

DBMS notes

Module-2

Dat abase Management System

Example: To list each emp loyee’s first and last name and salary, the follo wing is used:

[TunamE, FNaMEsaLarRY(EMPL OYEE)

Examples of applying S ELECT and PROJECT operations

Figure 6.1

Results of SELECT and PROJECT operations. () O(pno=4 AND Salary>25000) OR (Dno=5 AND Salary>30000) (EMPLOYEE).
(5) T name, Frame, Satary(EMPLOYEE). (C) Tisey saiary(EMPLOYEE),

C)]

Fname | Minit | Lname Ssn Bdate Address Sex | Salary | Super_ssn |Dno
Franklin i Wong 333445555 | 1955-12-08 | 638 Voss, Houston, TX M | 40000 | 888665555 | 5
Jennifer S Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX F 43000 | 888665555 | 4
Ramesh K Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX| M [38000 [333445555 | 5
(b) (c)

Lname Fname Salary Sex | Salary

Smith John 30000 M 30000

Wong Franklin | 40000 M | 40000

Zelaya Alicia 25000 F 25000

Wallace | Jennifer | 43000 F 43000

Narayan | Ramesh | 38000 M | 38000

English | Joyce 25000 M | 25000

Jabbar Ahmad 25000 M | 55000

Borg James 55000

Single expression versus sequence of relational operations

We may want to apply se veral relational algebra operations one after the other.

Either we can write the operations as a single relational algebra expressio n by nesting

the operations,

or

We can apply one operat ion at a time and create intermediate result relat ons.

In the latter case, we mus t give names to the relations that hold the inter

mediate results.

DrakshaveniG

,Dept.of MCA,BMSIT&M

page 82196

DBMS notes Module-2

To retrieve the first name , last name, and salary of all employees who wo rk
in department number 5, we must apply a select and a project operation We

can write a single relational algebra expression as follows:

PREPARED BY: NAMRATHA K Page 15

83 | 196

DBMS notes

Module-2

Dat abase Management System

[[FNAME, LNAME, SALARY (¢ DNO=5(EMPLOYEE))

OR We can explicitly sh ow the sequence of operations, giving a name to

each intermediate relation:

DEP5_EMPS «pNO=5(EMPLOYEE)

RESULT «[[FN AME, LNAME, SALARY (DEP5_EMPS)

Example of applying multiple operations and RENAME

(@
Fname | Lname | Salary
John Smith 30000
Franklin | Wong 40000
Ramesh | Narayan | 38000
Joyce English | 25000
(b)
TEMP
Fname | Minit | Lname Ssn. Bdate Address Sex | Salary | Super_ssn [Dno
John B Smith 123456789 | 1965-01-09 | 731 Fondren, Houston,TX | M | 30000 | 333445555 | 5
Franklin s Wong 333445555 | 1955-12-08 | 638 Voss, Houston,TX M 40000 | 888665555 | 5
Ramesh K Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble,TX | M 38000 | 333445555 | 5
Joyce A English | 4563453453 | 1972-07-31 | 5631 Rice, Houston, TX F 25000 | 333445555 | 5
R
First_name | Last_name | Salary
John Smith 30000
Franklin Wong 40000 Figure 6.2
Rarsh Narayan 38000 Results of a sequence of operations.
Joyce English | 25000 o (8) Tename, Lname, Satary(Gono-5(EMPLOYEE)).
(b) Using intermediate relations and renaming of attributes.
RENAME

The RENAME operator i s denoted by p (rho)

In some cases, we may w ant to rename the attributes of a relation or the relation

name or both

DrakshaveniG

,Dept.of MCA,BMSIT&M page 84| 196

DBMS notes Module-2

Useful when a query requires multiple operations
Necessary in some cases (see JOIN operation later)
RENAME operation — w hich can rename either the relation name or the

attribute names, or both

PREPARED BY: NAMRATHA K Page 16

85 | 196

DBMS notes Module-2

Database Management System

The general RENAME operation p can be expressed by any of the following forms:
ps(R) changes:
the relation name only to S
p(Bl, B2, ...,Bn)(R) changes:
the column (attribute) names only to B1, B1,Bn
PS (B1, B2, ..., Bn)(R) changes both:
the relation name to S, and

the column (attribute) names to B1, B1,Bn

Relational Algebra Operations from Set Theory

e Union
e Intersection
e Minus

» Cartesian Product

UNION

It is a Binary operation, denoted by U
The result of R E S, is a relation that includes all tuples that are either in R or
in S or in both R and S
Duplicate tuples are eliminated
The two operand relations R and S must be “type compatible” (or UNION
compatible)
R and S must have same number of attributes
Each pair of corresponding attributes must be type compatible (have same or

compatible domains)

Example:

86 | 196

DBMS notes Module-2

To retrieve the social security numbers of all employees who either work
indepartment 5 (RESULT1 below) or directly supervise an employee who
works in department 5 (RESULT2 below)

PREPARED BY: NAMRATHA K Page 17

87 | 196

DBMS notes

Module-2

Dat abase Management System

DEP5_EM PS « spnO=5 (EMPLOYEE)

RESULT! « p ssN(DEP5_EMPS)

RESULT2 « pSUPERSSN(DEPS5 EMPS)

RESULT « RESULT1 U RESULT2

The union operation prod uces the tuples that are in either RESULT1 or R ESULT2

or both.

The following query results r efer to this database state.

Figure 5.6
One possible database state for the COMPANY relational database schema.
EMPLOYEE
Fname | Minit | Lname Ssn Bdate Address Sex | Salary | Super_ssn | Dno
John B Smith 123456789 |1965-01-08 | 731 Fondren, Houston, TX| M (30000 (3334455556 5
Franklin T Wong | 333445555 | 1955-12-08 | 638 Voss, Houston, TX M [40000 |888665555| 5
Alicia J Zelaya | 999887777 | 1968-01-19 [3321 Castle, Spring, TX F |25000 (987654321 4
Jennifer S Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX F |43000 [888665555 4
Ramesh K Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX| M |38000 |333445565 5
Joyce A | English | 453453453 | 1972-07-31 | 56831 Rice, Houston, TX | F |25000 |333445555 | 5
Ahmad Vv Jabbar | 987987287 |1969-03-28 | 980 Dallas, Houston, TX M [25000 |987654321 4
James E Borg 888665555 [1937-11-10 | 450 Stone, Houston, TX M [55000 |NULL 1
DEPARTMENT DEPT_LOCATIONS
Dname Dnumber Mgr_ssn Mgr_start_date Dnumber Dlocation
Research 5 3334455556 1988-05-22 1 Houston
Administration 4 987654321 1995-01-01 4 Stafford
Headquarters 1 888665555 1981-06-19 5 Bellaire
5 Sugarland
5 Houston
WORKS_ON PROJECT
Essn Pno | Hours Pname Paumber | Plocation | Dnum
123456789 1 325 ProductX 1 Bellaire 5
123456789 2 75 ProductY 2 Sugarland 5
666884444 3 40.0 ProductZ 3 Houston 5
453453453 1 20.0 Computerization 10 Stafford 4
453453453 2 20.0 Reorganization 20 Houston 1
333445555 2 10.0 Newbenefils 30 Stafford 4
333445656 3 10.0
333445555 10 10.0 DEPENDENT
333445555 2 10.0 Essn Dependent_name | Sex Boate Relationship
9e9887777 30 | 300 333445555 Alice F | 1986-04-05 | Daughier
88887777 10 | 100 333445555 | Theodore M | 1983-10-25 | Son
987987987 10 | 350 333445555 | Joy F | 1958-05-03 | Spouse
987987987 30 5.0 987654321 Abner M | 1942:02-28 | Spouse
087654321 30 | 200 123456789 | Michael M | 1988-01-04 | Son
987654321 20 15.0 123456789 Alice F 1988-12-30 | Daughter
B88B665555 20 NULL 123456789 Elizabeth F 1967-05-05 | Spouse

Example of the result of a UNION operation

DrakshaveniG

,Dept.of MCA,BMSIT&M

page 88| 196

DBMS notes Module-2

UNION Example

PREPARED BY: NAMRATHA K Page 18

DrakshaveniG ,Dept.of MCA,BMSIT&M page 89| 196

DBMS notes Module-2

Dat abase Management System

Figure 6.3 RESULT1 RESULT2 RESULT

Result of the

UNION operation Ssn Ssn Ssn

RESULT « RESULT1 123456789 333445555 123456789

U RESULT2. 333445555 888665555 333445555
666884444 666884444
453453453 453453453

888665555
INTERSECTION

INTERSECTION is denoted by N

The result of the operation R N S, is a relation that includes all tuples that are in both
Rand S

The attribute names in the result will be the same as the attribute names in R

The two operand relations R and S must be “type compatible”

SET DIFFERENCE

SET DIFFERENCE (also called MINUS or EXCEPT) is denoted b y —

The result of R — S, is a relation that includes all tuples that are in R but not in S
The attribute names in the result will be the same as the attribute names in R

The two operand relations R and S must be “type compatible”

90 | 196

DBMS notes Module-2

PREPARED BY: NAMRATHA K Page 19

DrakshaveniG ,Dept.of MCA,BMSIT&M page 91| 196

DBMS notes Module-2

Dat abase Management System

Example to illustrate th e result of UNION, INTERSECT, and

DIFFERENCE
(a) STUDENT INSTRUCTOR
Fn Ln Fname Lname (b) Fn Ln
Susan Yao John Smith Susan Yao
Ramesh | Shah Ricardo | Browne Ramesh | Shah
Johnny Kohler Susan Yao Johnny Kohler
Barbara | Jones Francis | Johnson Barbara | Jones
Amy Ford Ramesh | Shah Amy Ford
Jimmy Wang Jimmy Wang
Ernest Gilbert Ernest Gilbert
John Smith
Ricardo | Browne
Francis | Johnson
(© Fn Ln (d) Fn Ln © | Fname | Lname
Susan Yao Johnny Kohler John Smith
Ramesh | Shah Barbara | Jones Ricardo | Browne
Amy Ford Francis | Johnson
Jimmy Wang
Ernest Gilbert
Figure 6.4

The set operations UNION, INTERSECTION, and MINUS. (a) Two union-compatible relations.
(b) STUDENT W INSTRUCTOR. (c) STUDENT M INSTRUCTOR. (d) STUDENT — INSTRUCTOR.
(e) INSTRUCTOR — STUDENT.

Some properties of UN ION, INTERSECT, and DIFFERENC E

Notice that both union an d intersection are commutative operations; that
isSRES=SER,andRCS=SCR
Both union and intersection can be treated as n-ary operations applicable to any

number of relations as bo th are associative operations; that is

DrakshaveniG ,Dept.of MCA,BMSIT&M page 92| 196

DBMS notes Module-2

RESET)=RES)ET
RCS)CT=R C(SCT)

The minus operation is n ot commutative; that is, in general

PREPARED BY: NAMRATHA K Page 20

DrakshaveniG ,Dept.of MCA,BMSIT&M page 93| 196

DBMS notes Module-2

Database Management System

R-S#S-R

CARTESIAN PRODUCT

CARTESIAN PRODUCT Operation

This operation is used to combine tuples from two relations in a combinatorial
fashion.
Denoted by R(Al, A2, ..., An) x S(B1, B2, .. ., Bm)
Result is a relation Q with degree n + m attributes:
Q(Al, A2, ..., An, B1, B2, .. ., Bm), in that order.

The resulting relation state has one tuple for each combination of tuples—one

from R and one from S.
Hence, if R has nR tuples (denoted as [R| =nR), and S has ng tuples,
then R x S will have nR* nS§ tuples.
The two operands do NOT have to be "type compatible”
Generally, CROSS PRODUCT is not a meaningful operation
Can become meaningful when followed by other operations
Example (not meaningful):

FEMALE EMPS «sSEx="F(EMPLOYEE)
EMPNAMES «[|[FNAME, LNAME, SSN (FEMALE EMPS)

EMP DEPENDENTS «~ EMPNAMES x DEPENDENT

94 | 196

DBMS notes Module-2

PREPARED BY: NAMRATHA K Page 21

DrakshaveniG ,Dept.of MCA,BMSIT&M page 95| 196

DBMS notes Module-2

Dat abase Management System

The following query re sults refer to this database state

96 | 196

DBMS notes Module-2

PREPARED BY: NAMRATHA K Page 22

DrakshaveniG ,Dept.of MCA,BMSIT&M page 97| 196

DBMS notes Module-2

Dat abase Management System

Example of applying C ARTESIAN PRODUCT

Example of applying C ARTESIAN PRODUCT

To keep only combinations where the DEPENDENT is related to the EM
PLOYEE, we add a SELECT opera tion as follows Add:

ACTUAL_DEPS «sSSN=ESSN(EMP_DEPENDENTYS)
RESULT «[|FNAME, L NAME, DEPENDENT NAME (ACTUAL_DEPS)

98 | 196

DBMS notes Module-2

Binary Relational Oper ations
* Division
* Join

PREPARED BY: NAMRATHA K

Page 23

99 | 196

DBMS notes Module-2

Database Management System

Division

Interpretation of the division operation A/B:
- Divide the attributes of A into 2 sets: Al and A2.
- Divide the attributes of B into 2 sets: B2 and B3.
- Where the sets A2 and B2 have the same attributes.
- For each set of values in B2:
- Search in A2 for the sets of rows (having the same Al values) whose A2 values
(taken together) form a set which is the same as the set of B2’s.
- For all the set of rows in A which satisfy the above search, pick out their

Al values and put them in the answer.

100 | 196

DBMS notes Module-2

PREPARED BY: NAMRATHA K Page 24

DrakshaveniG ,Dept.of MCA,BMSIT&M page 101]| 196

DBMS notes Module-2

Database Management System

102 | 196

DBMS notes Module-2

PREPARED BY: NAMRATHA K Page 25

DrakshaveniG ,Dept.of MCA,BMSIT&M page 103 | 196

DBMS notes Module-2

Dat abase Management System

JOIN

JOIN Operation (denoted by)
The sequence of CARTESIAN PRODECT followed by SELEC T is used
quite commonly to identify and select related tuples from two rel ations
This operation is very important for any relational database with more than a
single relation, be cause it allows us combine related tuples from various
relations
The general form of a join operation on two relations R(Al, A2, . . ., An) and

S(B1,B2,...,Bm)is:

R <join condition>S

104 | 196

DBMS notes Module-2

where R and S can be any relations that result from general relational
algebraexpressions.
Example: Suppose that w e want to retrieve the name of the manager of

each department.

PREPARED BY: NAMRATHA K Page 26

105 | 196

DBMS notes Module-2

Dat abase Management System

To get the manager’s nam e, we need to combine each DEPARTMENT t uple with the
EMPLOYEE tuple whos e SSN value matches the MGRSSN value in the department
tuple.

DEPT MGR « DEPARTMENT MGRSSN=SSN EMPLOYEE

The following query re sults refer to this database state

Example of applying th e JOIN operation

106 | 196

DBMS notes Module-2

DEPT MGR « DEPA RTMENT MGRSSN=SSN EMPLOYEE

PREPARED BY: NAMRATHA K Page 27

107 | 196

DBMS notes Module-2

Dat abase Management System

The general case of JOIN operation is called a Theta-join:

R theta S
The join condition is called theta

Theta can be any general boolean expression on the attributes of R and S;
forexample:
R.Ai<S.Bj AND (R.Ak=S.BI OR R.Ap<S.Bq)

EQUIJOIN

The most common use of join involves join conditions with equality com
parisons only Such a join, where the only comparison operator used is =, is
called an EQUIJOIN.

The JOIN seen in the previous example was an EQUIJOIN

NATURAL JOIN

Another variation of JOI N called NATURAL JOIN — denoted by *
It was created to get rid of the second (superfluous) attribute in a EQUIJOIN
condition.

Another example: Q < R (A,B,C,D) * S(C,D,E)
The implicit join condition includes each pair of attributes with t he

same name, “AND”ed t ogether:

R.C=S.C ANDR.D=S.D
108 | 196

DBMS notes Module-2

Result keeps only one attribute of each such pair:

Q(A,B,C, D,E)

PREPARED BY: NAMRATHA K Page 28

109 | 196

DBMS notes Module-2

Dat abase Management System

Example: To apply a nat ural join on the DNUMBER attributes of
DEPARTMENT and DEPT _LOCATION S, it is sufficient to write:

DEPT LOCS «~ DEPARTMENT * DEPT _LOCATIONS
Only attribute with the same name is DNUMBER

An implicit join condition is created based on this attribute:
DEPARTMENT.DNUMBER=DEPT LOCATIONS.DNUMBER

The following query resu lts refer to this database state

110 | 196

DBMS notes Module-2

PREPARED BY: NAMRATHA K Page 29

DrakshaveniG ,Dept.of MCA,BMSIT&M page 111 196

DBMS notes Module-2

Dat abase Management System

Example of NATURAL JOIN operation

Complete Set of Relat ional Operations

The set of operations incl uding SELECT o, PROJECT [], UNION U, DIFFERENCE

-, RENAME p, and CAR TESIAN PRODUCT X is called a complete se because any
other relational algebra e xpression can be expressed by a combination of these five

operations.
For example:

RNS=RUS)-((R-S)U(S-R))

R <join con dition>S =0<join condition>(R X S)

112 | 196

DBMS notes Module-2

PREPARED BY: NAMRATHA K Page 30

DrakshaveniG ,Dept.of MCA,BMSIT&M page 113|196

DBMS notes Module-2

Dat abase Management System

Recap of Relational Alg ebra Operations

NATURAL JOIN

Example: To apply a nat ural join on the DNUMBER attributes of
DEPARTMENT and DEPT LOCATION 8§, it is sufficient to write:

DEPT LOCS « DEPARTMENT * DEPT_LOCATIONS

Only attribute with the same name is DNUMBER

114 | 196

DBMS notes Module-2

An implicit join condition is created based on this attribute:

DEPARTMENT.DNUMBE R=DEPT LOCATIONS.DNUMBER

PREPARED BY: NAMRATHA K Page 31

115 | 196

DBMS notes Module-2

Database Management System

Aggregate Functions and Grouping

A type of request that cannot be expressed in the basic relational algebra is to specify

mathematical aggregate functions on collections of values from the database.

Examples of such functions include retrieving the average or total salary of all

employees or the total number of employee tuples.

Common functions applied to collections of numeric values include
SUM, AVERAGE, MAXIMUM, and MINIMUM.

The COUNT function is used for counting tuples or values.

Use of the Aggregate Functional operation {

{ MAX Salary (EMPLOYEE) retrieves the maximum salary value from
the EMPLOYEE relation

{ MIN Salary (EMPLOYEE) retrieves the minimum Salary value from
the EMPLOYEE relation

¢ SUM Salary (EMPLOYEE) retrieves

{COUNTSSN, AVERAGE Salary the sum of the Salary from the

EMPLOYEE relation

~ (EMPLOYEE) computes the count (number)
of employees and their average salary

116 | 196

DBMS notes Module-2

Additional Relational Operations

Outer Join

The OUTER JOIN Operation

PREPARED BY: NAMRATHA K

Page 32

117 | 196

DBMS notes Module-2

Database Management System

In NATURAL JOIN and EQUIJOIN, tuples without a matching (or related)

tuple are eliminated from the join result

Tuples with null in the join attributes are also eliminated
This amounts to loss of information.

A set of operations, called OUTER joins, can be used when we want to keep
all the tuples in R, or all those in S, or all those in both relations in the result
of the join, regardless of whether or not they have matching tuples in the

other relation.

The left outer join operation keeps every tuple in the first or left relation R in R S; if
no matching tuple is found in S, then the attributes of S in the join result are filled or

“padded” with null values.

A similar operation, right outer join, keeps every tuple in the second or right relation

S in the result of R S.

A third operation, full outer join, denoted by keeps all tuples in both the left and the

right relations when no matching tuples are found, padding them with null values as

needed.

118 | 196

DBMS notes Module-2

PREPARED BY: NAMRATHA K Page 33

DrakshaveniG ,Dept.of MCA,BMSIT&M page 119 196

DBMS notes Module-2

Dat abase Management System

Left Outer Join

E.g. List all employees and t he department they manage, if they manage a de partment.

Outer join

Left ou ter,rightouter and full outer join

120 | 196

DBMS notes Module-2

PREPARED BY: NAMRATHA K Page 34

DrakshaveniG ,Dept.of MCA,BMSIT&M page 121|196

Database Management System

Examples of Queries in Relational Algebra

Q1: Retrieve the name and address of all
employees who work for the ‘Research’
department.

RESEARCH DEPT <oDNAME="Research’ (DEPARTMENT)

RESEARCH_EMPS « (RESEARCH_DEPT DNUMBER=
DNOEMPLOYEE EMPLOYEE)

RESULT «[|FNAME, LNAME, ADDRESS (RESEARCH_EMPS)

Q6: Retrieve the names of employees who have no
dependents.

ALL_EMPS «[]ssN(EMPLOYEE)

EMPS_WITH_DEPS(SSN) «[EssN(DEPENDENT)

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M 122

EMPS_WITHOUT DEPS « (ALL EMPS - EMPS_WITH DEPS)

RESULT «J|LNAME, FNAME (EMPS_ WITHOUT DEPS *
EMPLOYEE)

PREPARED BY: NAMRATHA
K

Page 35

Prepared By: Drakshaveni G- Asst.Prof.Dept.of MCA,BMSIT&M 123

MODULE 3

SQL The Relational Database Standard

4.1 Data Definition, Constraints, and Schema Changes in SQL2

Structured Query Language (SQL) was designed and implemented at IBM Research.
Created in late 70‘s, under the name of SEQUEL
A standard version of SQL (ANSI 1986), is called SQL86 or SQL1.
A revised version of standard SQL, called SQL2 (or SQL92).
SQL are going to be extended with objectoriented and other recent database concepts.
Consists of
A Data Definition Language (DDL) for declaring database schemas
Data Manipulation Language (DML) for modifying and quer ying database
instances
In SQL, relation, tuple, and attribute are called table, row , and columns respectively.
The SQL commands for data definition are CREATE, ALTER , and DROP.
The CREATE TABLE Command is used to specify a new table by giving it a name and
specifying its attributes (columns) and constraints.
Data types available for attributes are:
Numeric integer, real (formated, suchas DECIMAL(10,2))
CharacterString fixedlength and varyinglength
BitString fixedlength, varyinglength
Datein the form YYYYMMDD
Timein the form HH:MM:SS
Timestamp includes boththe DATEand TIME fields
Interval to increase/decrease the value of date, time, or timestamp

0]

O O O OO0 o

4.2 Basic Queries in SQL

SQL allows a table (relation) to have two or more tuples that are identical in all their
attributes values. Hence, an SQL table is not a set of tuple, because a set does not allow
two identical members; rather it is a multiset of tuples.

A basic query statement in SQL is the SELECT statement.

The SELECT statement used in SQL has no relationship to the SELECT operation of
relational algebra.

The SELECT Statement

The syntax of this command is:
SELECT <attribute list>
FROM <table list>
WHERE <Condition>;

Some example:

59

Query 2:

Query 8:

Query 0: Retrieve the birthday and address of the employee(s) whose name is =John B. Smith*
QO: SELECT BDATE, ADDRESS

FROM EMPLOYEE

WHERE FNAME ==John‘ AND MINIT ==B‘ AND LNAME ==SMITH*
Query 1: Retrieve the name and address of all employee who work for the =Research‘ Dept.
Q1. SELECT FNAME, LNAME, ADDRESS

FROM EMPLOYEE, DEPARTMENT

WHERE DNAME ==Resear ch®* AND DNUMBER = DNO

For every project located in =Stafford‘, list the project number, the controlling
department number, and the department manager*s last name, address, and birthdate.

Q2: SELECT PNUMBER, DNUM, LNAME, ADDRESS, BDATE
FROM PROJECT, DEPARTMENT, EMPLOYEE

WHERE DNUM=DNUMBER AND MGRSSN=SSN AND PLOCATION =
=Stafford*

Dealing with Ambiguous Attribute Names and Renaming (Aliening)

Ambiguity in the case where attributes are same name need to qualify the attribute using DOT
separator

e.g., WHERE DEPARTMENT.DNUMBER=EMPLOYEE.DNUMBER
More
Ambiguity in the case of queries that refer to the same relation twice

For each employee, retrieve the employee‘s first and last name and the first and last
name of his or her immediate supervisor

Q8: SELECT E.FNAME, E.LNAME, S.FNAME, S.LNAME

FROM EMPLOYEE ASE, EMPLOYEE AS S

60

125

WHERE E.SUPERSSN=S.SSN
Unspecified WHERECIause and Use of Asterisk (*)

A missing WHEREclause indicates no conditions, which means all tuples are selected
In case of two or more table, then all possible tuple combinations are selected

Example: Q10: Select all EMPLOYEE SSNs, and all combinations of EMPLOYEE SSN and
DEPARTMENT DNAME

SELECT SSN, DNAME

FROM EMPLOYEE, DEPARTMENT

More

To retrieve all the attributes, use * in SELECT clause

Retrieve all employees working for Dept. 5

SELECT *

FROM EMPLOYEE

WHERE DNO=5

Substring Comparisons, Arithmetic Operations, and Ordering
like, binary operator for comparing strings
%, wild card for strings
_, wild card for characters
||, concatenate operation for strings

(name like © gy °) is true for all names having =a® as second letter from the end.

Partial strings are specified by using '

SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE FNAME LIKE '%Mc%";

In order to list all employee who were born during 1960s we have the followings:

SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE BDATE LIKE '6 ';

61

126

SQL also supports addition, subtraction, multiplication and division (denoted by +, , *,
and /, respectively) on numeric values or attributes with numeric domains.

Examples: Show the resulting salaries if every employee working on the 'ProductX' project is
given a 10 percent raise.

SELECT FNAME, LNAME, 1.1*SALARY
FROM EMPLOYEE, WORKS_ON, PROJECT

WHERE SSN=ESSN AND PNO=PNUMBER AND PNAME="ProductX

Retrieve all employees in department number 5 whose salary between $30000 and $40000.

SELECT *
FROM EMPLOYEE
WHERE (SALARY BETWEEN 30000 AND 40000) AND DNO=5;

It is possible to order the tuples in the result of a query.

SELECT DNAME, LNAME, FNAME, PNAME

FROM DEPARTMENT, EMPLOYEE, WORKS_ON, PROJECT
WHERE DNUMBER=DNO AND SSN=ESSN AND PNO=PNUMBER
ORDER BY DNAME, LNAME, FNAME;

The default order is in ascending order, but user can specif y
ORDER BY DNAME DESC, LNAME ASC, FNAME, ASC;
Tables as Sets in SQL

SQL treats table asa multiset, which means duplicate tuples are OK

SQL does not delete duplicate because Duplicate elimination is an expensive operation (sort and
delete) user may be interested in the result of a query in case of aggregate function, we do not
want to eliminate duplicates

To eliminate duplicate, use DISTINCT

examples

Q11: Retrieve the salary of ever y employee , and (Q!2) all distinct salary values

Q11: SELECT ALL SALARY

FROM EMPLOYEE

Q12: SELECT DISTINCT SALARY

62

FROM EMPLOYEE
4.3 More Complex SQL Queries

Complex SQL queries can be formulated by composing nested SELECT/FROM/WHERE
clauses within the WHERECclause of another query

Example: Q4: Make a list of Project numbers for projects that involve an employee whose last
name is =Smith°, either as a worker or as a manger of the department that controls the project

Q4 SELECT DISTINCT PNUMBER

FROM PROJECT

WHERE PNUMBER IN (SELECT PNUMBER
FROM PROJECT, DEPARTMENT, EMPLOYEE

WHERE DNUM=DNUMBER AND MGRSSN=SSN AND
LNAME==Smith*

OR PNUMBER IN (SELECT PNO

FROM WORKS_ON, EMPLOYEE

WHERE ESSN=SSN AND LNAME==Smith*)
IN operator and set of unioncompatible tuples

Example:

SELECT DISTINCT ESSN

FROM WORKS_ON

WHERE (PNO, HOURS) IN (SELECT PNO, HOURS
FROM WORKS_ON

WHERE SSN==123456789¢

ANY, SOME and >, <=,<> etc.

63

128

The keyword ALL

In addition to the IN operator, a number of other comparison operators can be used to compare a
single value v to a set of multiset V.

ALL V returns TRUE if v is greater than all the value in the set

Select the name of employees whose salary is greater than the salary of all the
employees in department 5

SELECT LNAME, FNAME

FROM EMPLOYEE

WHERE SALARY > ALL (SELECT SALARY
FROM EMPLOYEE

WHERE DNO=5);

Ambiguity in nested query

SELECT E.FNAME, E.LNAME

FROM EMPLOYEE AS E

WHERE E.SSN IN (SELECT ESSN

FROM DEPENDENT

WHERE ESSN=E.SSN AND E.FNAM=DEPENDENT_NAME AND
SEX=E.SEX

Correlated Nested Query

Whenever a condition in the WHEREclause of a nested quer y references some attributes of a
relation declared in the outer query, the two queries are said to be correlated. The result of a
correlated nested query is different for each tuple (or combination of tuples) of the r elation(s) the

outer query.

In general, any nested query involving the = or comparison operator IN can always be
rewritten as a single block query

SELECT E.FNAME, E.LNAME
FROM EMPLOYEE E, DEPENDENT D

WHERE E.SSN=D.ESSN AND E.SEX=D.SEX AND E.FNAME =D.DEPENDENT=NAME

Query 12: Retrieve the name of each emplo yee who has a dependent with the same first name as the employee.

64

Q12: SELECT E.FNAME, E.LNAME
FROM EMPLOYEE ASE

WHERE E.SSN IN (SELECT ESSN
FROM DEPENDENT

WHERE ESSN=E.SSN AND
E.FNAME=DEPENDENT_NAME)

In Q12, the nested query has a different result for each tuple in the outer query.

The original SQL as specified for SYSTEM R also had a CONTAINS comparison operator,
which is used in conjunction with nested correlated queries This operator was dropped from the
language, possibly because of the difficulty in implementing it efficiently Most implementations
of SQL do not have this operator The CONTAINS operator compar es two sets of values , and
returns TRUE if one set contains all values in the other set (reminiscent of the division operation

of algebra).

Query 3: Retrieve the name of each employee who works on all the projects controlled by
department number 5.

Q3: SELECT FNAME, LNAME
FROM EMPLOYEE WHERE ((SELECT PNO FROM WORKS_ON WHERE SSN=ESSN)
CONTAINS (SELECT PNUMBER FROM PROJECT WHERE DNUM=5))

In Q3, the second nested query, which is not correlated with the outer query, retrieves the project
numbers of all projects controlled by department 5.

The first nested query, which is correlated, retrieves the project numbers on which the employee
works, which is different for each employee tuple because of the correlation.

THE EXISTS AND UNIQUE FUNCTIONS IN SQL

EXISTS is used to check whether the result of a correlated nested query is empty (contains no
tuples) or not We can formulate Query 12 in an alternative form that uses EXISTS as Q12B
below.

Query 12: Retrieve the name of each employee who has a dependent with the same first name as
the employee.

SELECT E.FNAME, E.LNAME
FROM EMPLOYEE E
WHERE EXISTS (SELECT *
FROM DEPENDENT

65

WHERE E.SSN=ESSN AND SEX=E.SEX AND
E.FNAME=DEPENDENT_NAME

Query 6: Retrieve the names of employees who have no dependents.

Q6: SELECT FNAME, LNAME
FROM EMPLOYEE

WHERE NOT EXISTS (SELECT *
FROM DEPENDENT

WHERE SSN=ESSN)

In Q6, the correlated nested query retrieves all DEPENDENT tuples related to an EMPLOYEE
tuple. If none exist , the EMPLOYEE tuple is selected EXISTS is necessary for the expressive
power of SQL

EXPLICIT SETS AND NULLS IN SQL

It is also possible to use an explicit (enumerated) set of values in the WHEREclause rather than

a nested query Query 13: Retrieve the social security numbers of all employees who work on
project number 1, 2, or 3.

Retrieve SSNs of all employees who work on project number 1,2,3

SELECT DISTINCT ESSN

FROM WORKS_ON

WHERE PNO IN (1,2,3)

Null example

SQL allows queries that check if a value is NULL (missing or undefined or not applicable) SQL
uses IS or IS NOT to compare NULLSs because it considers each NULL value distinct from other
NULL values, so equality comparison is not appropriate .

Retrieve the names of all employees who do not have supervisors

SELECT FNAME, LNAME

FROM EMPLOYEE

WHERE SUPERSSN IS NULL

Note: If a join condition is specified, tuples with NULL values for the join attributes are not
included in the result

Join Revisit

66

Retrieve the name and address of every employee who works for =Search® department

SELECT FNAME, LNAME, ADDRESS
FROM (EMPLOYEE JOIN DEPARTMENT ON DNO=DNUMBER)
WHERE DNAME==Search*

Aggregate Functions

Include COUNT, SUM, MAX, MIN, and AVG

Query 15: Find the sum of'the salaries of all employees the =Research dept, and the max salary,
the min salary, and average:

SELECT SUM(SALARY), MAX(SALARY), MIN(SALARY) AVG(SALARY)
FROM EMPLOYEE
WHERE DNO=FNUMBER AND DNAME==RSEARCH®

Query 16: Find the maximum salary, the minimum salary, and the average salary among
employees who work for the 'Research’ department.

Q16: SELECT MAX(SALARY), MIN(SALARY), AVG(SALARY)
FROM EMPLOYEE, DEPARTMENT
WHERE DNO=DNUMBER AND DNAME='Research’

Queries 17 and 18: Retrieve the total number of employees in the company (Q17), and the
number of employees in the 'Research’ department (Q18).

Q17: SELECT COUNT (*)

FROM EMPLOYEE

Q18: SELECT COUNT (*)

FROM EMPLOYEE, DEPARTMENT

WHERE DNO=DNUMBER AND DNAME='Research'

Example of grouping

In many cases, we want to apply the aggregate functions to subgroups of tuples in a relation
Each subgroup of tuples consists of the set of tuples that have the same value for the grouping
attribute(s)

The function is applied to each subgroup independently

67

SQL has a GROUP BYclause for specif ying the grouping attributes, which must also appear in
the SELECTclause

For each project, select the project number, the project name, and the number of employees
who work on that projet

SELECT PNUMBER, PNAME, COUNT(*)
FROM PROJECT, WORKS_ON

WHERE PNUMBER=PNO

GROUP BY PNUMBER, PNAME

In Q20, the EMPLOYEE tuples are divided into groupseach group having the same value for the
grouping attribute DNO

The COUNT and AVG functions are applied to each such group of tuples separately.The
SELECTclause includes only the grouping attribute and the functions to be applied on each
group of tuples. A join condition can be used in conjunction with grouping

(%uery 21: For each project, retrieve the project nu mber, project name, and the nu mber of emplo yees who work on
that project.

Q21: SELECT PNUMBER, PNAME, COUNT (*)

FROM PROJECT, WORKS_ON

WHERE PNUMBER=PNO

GROUP BY PNUMBER, PNAME

In this case, the grouping and functions are applied after the joining of the two relations

THE HAVINGCLAUSE:

Sometimes we want to retrieve the values of these functions for only those groups that satisfy
certain conditions. The HAVINGclause is used for specifying a selection condition on groups
(rather than on individual tuples)

Query 22: For each project on which more than two employees work , retrieve the project
number, project name, and the number of employees who work on that project.

Q22: SELECT PNUMBER, PNAME, COUNT (*)
FROM PROJECT, WORKS_ON

WHERE PNUMBER=PNO

GROUP BY PNUMBER, PNAME

HAVING COUNT (*) > 2

68

Questions

=

Explain how groupBy clause works?What is the difference between WHERE and Having?

2. Howdoes SQL inplement the entity integrity constraints of relational Data Model?Explain
with an example?

3. With respect to SQL, explain with example.

Explain IN and EXISTS operations with an example

Explain UNIQUE and INTERSECTION operations with an example

os

69

134

SQL 2 The Relational Database Standard
5.1 Update Statements in SQL
5.2 Views in SQL
5.3 Additional features
5.4 Database Programming

5.5 Embedded SQL

5.6 Dynamic SQL

5.7 Database stored procedures and SQL/PSM

70

135

SQL The Relational Database Standard

5.1 Update Statements in SQL
The Insert Command
INSERT INTO EMPLOYEE

VALUES (=Richard‘,’K*,"Marini‘,653298653°,°30dec52°,98 Oak Forest, Katy,
TX*,‘M*,37000,°987654321°,4)

More on Insert

Use explicit attribute names:

INSERT INTO EMPLOYEE (FNAME, LNAME,SSN)
VALUES (=Richard‘,‘Marini‘, =653298653°

The DELECT Command

DELETE FROM EMPLOYEE

WHERE LNAME==Brown*

The UPDATE Command

Used to modify values of one or more selected tuples

Change the location and controlling department number of project number 10 to =Bellaire® and 5
respectively

UPDATE PROJECT

SET PLOCATION = = Bellaire‘, DNUM=5

Where PNUMBER=10;

5.2 Views in SQL

A view refers to a single table that is derived from other tables

CREATE VIEW WORKS_ON1

71

136

AS SELECT FNAME, LNAME, PNAME, HOURS

FROM EMPLOYEE, PROJECT, WORKS_ON WHERE SSN=ESSN AND PNO=PNUMBER
More on View

CREATE VIEW DEPT_INFO(DEPT_NAME, NO_OF_EMPLS, TOTAL_SAL)
AS SELECT DNAME, COUNT(*), SUM(SALARY)

FROM DEPARTMENT, EMPLOYEE

WHERE DNUMBER=DNO

GROUP BY DNAME

More on view

Treat WORKS_ON1 like a base table as follows

SELECT FNAME, LNAME

FROM WORKS_ON1

WHERE PNMAE==PROJECTX"

Main advantage of view:

Simplify the specification of commonly used queries

More on View

A View is always up to date;

A view is realized at the time we specify(or execute) a quer y on the view
DROP VIEW WORKS_ON1

Updating of Views

Updating the views can be complicated and ambiguous

In general, an update on a view on defined on a single table w/o any aggregate functions can be
mapped to an update on the base table

72

137

More on Views

We can make the following observations:

A view with a single defining table is updatable if we view contain PK or CK of the base table
View on multiple tables using joins are not updatable

View defined using grouping/aggregate are not updatable

Specifying General Constraints

Users can specify certain constraints such as semantics constraints

CREATE ASSERTION SALARY_CONSTRAINT

CHECK (NOT EXISTS (SELECT * FROM EMPLOYEE E, EMPLOYEE M,
DEPARTMENT D

WHERE E.SALARY > M. SALARY ANDE.DNO=D.NUMBER ANDD.MGRSSN=M.SSN))
5.3 Additional features

Granting and revoking privileges
Embedding SQL statements in a general purpose languages (C, C++, COBOL, PASCAL)

SQL can also be used in conjunction with a general purpose programming language, such as
PASCAL, COBOL, or PL/I. The programming language is called the host language. The
embedded SQL statement is distinguished from programming language statements by prefixing

it with a special character or command so that a preprocessor can extract the SQL statements. In
PL/l the keywords EXEC SQL precede any SQL statement. In some implementations, SQL
statements are passed as parameters in procedure calls. We will use PASCAL as the host
programming language, and a "$"sign to identify SQL statements in the program. Within an
embedded SQL command, we may refer to program variables, which are prefixed by a "% sign.
The programmer should declare program variables to match the data types of the database
attributes that the program will process.These program variables may or may not have names
that are identical to their corresponding attributes.

Example: Write a program segment (loop) that reads a social security number and prints out some information from
the corresponding EMPLOYEE tuple

E1l: LOOP:="Y"
while LOOP ="Y"do
begin

writeln(input social security number:");

73

readin(SOC_SEC_NUM);

$SELECT FNAME, MINIT, LNAME, SSN, BDATE,
ADDRESS, SALARY

INTO %E.FNAME, %E.MINIT, %E.LNAME, %E.SSN,
%E.BDATE, %E.ADDRESS, %E.SALARY

FROM EMPLOYEE

WHERE SSN=%SOC_SEC_NUM;

writeln(E.FNAME, E.MINIT, E.LNAME, E.SSN,
E.BDATE, E.ADDRESS, E.SALARY);
writeln('more social security numb ers (Y or N)?);
readin(LOOP)

end;

In E1, asingle tuple is selected by the embedded SQL quer y; that is why we are able to assign

its attribute values directly to program variables. In general, an SQL query can retrieve many
tuples. The concept of a cursor is used to allow tupleatatime processing by the PASCAL
programCURSORS: We can think of a cursor asa pointer that pointsto a single tuple (row)
from the result of a query.The cursor is declared when the SQL query command is specified. A
subsequent OPEN cursor command fetches the query result and sets the cursor to a position
before the first row in the result of the query; this becomes the current row for the cursor.
Subsequent FETCH commands in the program advance the cursor to the next row and copy its
attribute values into PASCAL program variables specified in the FETCH command. An implicit
variable SQLCODE communicates to the program the status of SQL embedded commands. An
SQLCODE of 0 (zero) indicates successful execution. Different codes are returned to indicate
exceptions and errors. A special END_OF CURSOR code is used to terminate a loop over the
tuples in a query result. A CLOSE cursor command is issued to indicate that we are done with

the result of the query

When a cursor is defined for rows that are to be updated the clause FOR UPDATE OF must be

in the cursor declaration, and a list of the names of any attributes that will be updated
follows.The condition WHERE CURRENT OF cursor specifies that the current tuple is the one

to be updated (or deleted)

Example: Write a program segment that reads (inputs) a department name, then lists the names
of employees who work in that department, one at a time. The program reads a raise amount for
each employee and updates the employee's salary by that amount.

E2: writeln('enter the department name:"); readin(DNAME);
$SELECT DNUMBER INTO %DNUMBER

FROM DEPARTMENT

WHERE DNAME=%DNAME;

$DECLARE EMP CURSOR FOR

SELECT SSN, FNAME, MINIT, LNAME, SALARY
FROM EMPLOYEE

WHERE DNO=%DNUMBER

FOR UPDATE OF SALARY;

$OPEN EMP;

$FETCH EMP INTO %E.SSN, %E.FNAME, %E.MINIT,
%E.LNAME, %E.SAL;

74

while SQLCODE =0 do

begin

writeln('employee name: ', E.FNAME, E.MINIT, E.LNAME);
writeln('enter raise amount: '); readin(RAISE);

$UPDATE EMPLOYEE SET SALARY = SALARY + %RAISE
WHERE CURRENT OF EMP;

$FETCH EMP INTO %E.SSN, %E.FNAME, %E.MINIT,
%E.LNAME, %E.SAL,

end;

$CLOSE CURSOR EMP;

5.4 Database Programming

Objective:
To access a database from an application program (as opposed to interactive
interfaces)
Why?
An interactive interface is convenient but not sufficient
A majority of database operations are made thru application progr ams
(increasingly thru web applications)
Embedded commands:
Database commands are embedded in a general-purpose programming language
Library of database functions:
Available to the host language for database calls; knownasan API
APIstandards for Application Program Interf ace
A brand new, full-fledged language
Minimizes impedance mismatch

Impedance Mismatch

Incompatibilities between a host programming language and the database model, e.g.,
type mismatch and incompatibilities; requires a new binding for each language
set vs. record-at-a-time processing
need special iterators to loop over quer y results and manipulate individual
values
Client program opens a connection to the database server
Client program submits queries to and/or updates the database
When database access is no longer needed, client program closes (terminates) the
connection

5.5 Embedded SQL

Most SQL statements can be embedded in a general-purpose hostprogramming language
such as COBOL, C, Java

75

An embedded SQL statement is distinguished from the host language statements by
enclosing it between EXEC SQL or EXEC SQL BEGIN and a matching END-EXEC or
EXEC SQL END (or semicolon)
Syntax may vary with language
Shared variables (used in both languages) usually prefixed with a colon (:) in
SQL
Variables inside DECLARE are shared and can appear (while prefixed by a colon) in
SQL statements
SQLCODE is used to communicate errors/exceptions between the database and the
program
int loop;
EXEC SQL BEGIN DECLARE SECTION;
varchar dname[16], fhame[16], ...;
char ssn[10] , bdate[11], ...;
int dno, dnumber, SQLCODE, ...;
EXEC SQL END DECLARE SECTION;
Connection (multiple connections are possible but only one is active)
CONNECT TO server-name AS connection-name
AUTHORIZATION user-account-info;
Change from an active connection to another one
SET CONNECTION connection-name;
Disconnection
DISCONNECT connection-name;
loop =1;
while (loop) {
prompt (Enter SSN: , ssn);
EXEC SQL

76

141

select FNAME, LNAME, ADDRESS, SALARY
into :fname, :Iname, :address, :salary
from EMPLOYEE where SSN == :ssn;
if (SQLCODE == 0) printf{fname, ...);
else printf(SSN does not exist: , ssn);
prompt(More SSN? (1=yes, 0=no): , loop);
END-EXEC
}A cursor (iterator) is needed to process multiple tuples
FETCH commands move the cursor to the nexttuple
CLOSE CURSOR indicates that the processing of query results has been completed

Objective:

5.6 Dynamic SQL

Composing and executing new (not previously compiled) SQL statements at run-time

a program accepts SQL statements from the keyboard at run-time
a point-and-click operation translates to certain SQL query
Dynamic update is relatively simple; dynamic query can be complex
because the type and number of retrieved attributes are unknown at compile time

EXEC SQL BEGIN DECLARE SECTION;

varchar sqlupdatestring[256];

EXEC SQL END DECLARE SECTION;

...prompt (Enter update command: , sqlupdatestring);

EXEC SQL PREPARE sqglcommand FROM :sqglupdatestring;
EXEC SQLSQLJ: a standard for embedding SQL in Java
An SQLJ translator converts SQL statements into Java

These are executed thru the JDBC interface

Certain classes have to be imported
E.g., java.sql

77

142

EXECUTE sqlcommand;

Environment record :
Keeps track of database connections
Connection record :
Keep tracks of info needed for a particular connection
Statement record :
Keeps track of info needed for one SQL statement
Description record :
Keeps track of tuples
Load SQL/CLI libraries
Declare record handle variables for the above components (called: SQLHSTMT,
SQLHDBC, SQLHENV, SQLHDEC)
Set up an environment record using SQLAIllocHandle
Set up a connection record using SQLAIllocHandle
Set up a statement record using SQLAIllocHandle
Prepare a statement using SQL/CLI function SQLPrepare
Bound parameters to program variables
Execute SQL statement via SQLEXxecute
Bound query columns to a C variable via SQLBindCol
Use SQLFetch to retrieve column values into C variables

5.7 Database stored procedures and SQL/PSM

Persistent procedures/functions (modules) are stored locally and executed by the
database server
As opposed to execution by clients
Advantages:
If the procedure is needed by many applications, it can be invoked by any of them
(thus reduce duplications)
Execution by the server reduces communication costs
Enhance the modeling power of views
Disadvantages:
Every DBMS has its own syntax and this can make the system less portable

A stored procedure
CREATE PROCEDURE procedur e-name (params)
local-declarations
procedure-body;

A stored function

78

CREATE FUNCTION fun-name (params) RETRUNS return-type
local-declarations
function-body;
Calling a procedure or function
CALL procedure-name/fun-name (arguments);
SQL/PSM:
Part of the SQL standard for writing persistent stored modules
SQL + stored procedures/functions + additional programming constructs
E.g., branching and looping statements
Enhance the power of SQL
CREATE FUNCTION DEPT_SIZE (IN deptno INTEGER)
RETURNS VARCHAR[7]
DECLARE TOT_EMPS INTEGER,;
SELECT COUNT (*) INTO TOT_EMPS
FROM SELECT EMPLOYEE WHERE DNO = deptno;
IF TOT_EMPS > 100 THEN RETURN HUGE
ELSEIF TOT_EMPS >50 THEN RETURN LARGE
ELSEIF TOT_EMPS > 30 THEN RETURN MEDIUM

ELSE RETURN SMALL

ENDIF;

Questions

79

144

Questions

1.
2.

© o

List the approaches to DB Programming. Main issues involved in DB Programming?

What is Impedance Mismatch problem? Which of the three programming approaches
minimizes this problem

How are Triggers and assertions defined in SQL?Explain

A explain the syntax of a SELECT statement in SQL.write the SQL query for the following
relation algebra expression.

Explain the drop command with an example
How is a view created and dropped? What problems are associated with updating of views?

What is embedded SQL? With an example explain how would you Connect to a database, fetch
records and display. Also explain the concept of stored procedure in brief.

Explain insert, delete and update statements in SQL with example.

Write a note on aggregate functions in SQL with examples.

80

145

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(Affiliated to the Visvesvaraya Technological University, Belagavi)

146

Department of Master of Computer Applications

Subject: Database Management System

Prepared by: Drakshaveni G
Assistant Professor
Dept.of MCA
BMSIT&M

Module -4

147

MODEL-4 Data Base design-1

6.1 Informal design guidelines for relation schemas

The four informal measures of quality for relation schema

Semantics of the attributes

Reducing the redundant values in tuples

Reducing the null values in tuples

Disallowing the possibility of generating spurious tuples

6.1.1 Semantics of relations attributes

Specifies how to interpret the attributes values stored in a tuple of the relation. In other words,
how the attribute value in a tuple relate to one another.

Figure 14.1 Simplified version of the
COMPANY relational database schema.

EMPLOWEE k.
| EMAME | ssH | BOATE | ADDRESS | CHUMEER
pk
DEPARTMENT s
| DMAME | DHUMBER | DMGRSEN |
pk

DEPT_LOCATIONS
LK.

| CHLMEBER DLOCATION |
‘

L

T4 4

PROECT [k

PHAME PHUMBER PLOCATION IHLIM
Rk

WORKS_ON

13 Ik
|SSH FHUMEER |Hn:uns |
'-.—T,—l

Pk

Guideline 1 : Design a relation schema so that it is easy to explain its meaning. Do not combine
attributes from multiple entity types and relationship types into a single relation.

Reducing redundant values in tuples. Save storage space and avoid update anomalies.

82

148

Insertion anomalies.
Deletion anomalies.
Modification anomalies.

Ficure 14.3 Two relation schemas and their functional
dependencies. Both sufter from update anomalies. (a) The EmMP_DEPT
relation schema. (b) The Emp_pror relation schema.

(a) EMP_DEFT

EMAME SEN BOATE ADDRESS DHUMBER DMAME DMGRSSN

S . N SN
.+ 1

(b EMP_PRCU

55N | PMNUMEER | HOURS | EMAME PMARME PLOCATION

o | | $

FO2

FO2

Insertion Anomalies
To insert a new employee tuple into EMP_DEPT, we must include either the attribute values for that

department that the employee works for, or nulls.

It's difficult to insert a new department that has no employee as yet in the EMP_DEPT relation.
The only wayto do this isto place null values in the attributes for employee. This causes a
problem because SSN is the primary key of EMP_DEPT, and each tuple is supposed to represent
an employee entity - not a department entity.

Deletion Anomalies
If we delete from EMP_DEPT an employee tuple that happens to represent the last employee working for
a particular department, the information concerning that department is lost from the database.

Modification Anomalies
In EMP_DEPT, if we change the value of one of the attributes of a particular department- say the
manager of department 5- we must update the tuples of all employees who work in that department.

Guideline 2: Design the base relation schemas so that no insertion, deletion, or modification
anomalies occur. Reducing the null values in tuples. e.g., if 10% of employees have offices, it is

83

149

better to have a separate relation, EMP_OFFICE, rather than an attribute OFFICE_NUMBER in
EMPLOYEE.

Guideline 3 : Avoid placing attributes in a base relation whose values are mostly null.
Disallowing spurious tuples.

Spurious tuples - tuples that are not in the original r elation but generated by natural join of
decomposed subrelations.

Example: decompose EMP_PROJ into EMP_LOCS and EMP_PROJL1.

() EMP LOCS
EMAME PLOCATION
L !
¥
p.k.
EMP PRO.J
S5 PHUMEER HOURS PHAME PLOCATION
i 2
Ly
p.k.
i) EMP LOCS
EMAME PLOCATIOMN
Smith, John B. Eallbire
Smith, John B. Sugartand
Marayan, Rameash K. Hoteton
English, JoycsA. Ballzirs
English, Joycs A, Sugartand
Wiong, Frankin T. Sugartand
Wiong, Frankin T Haietion
e L DI e
Zalaya, Alicia J. Stafiomd
Jabber, Ahmad . Stafiomrd
WiElace, lernikrs. Stafiomrd
Willace, Jermifer S, Hoeton
Borg, tames E. Hoteton

Fig. 14.5a

Guideline 4 : Design relation schemas so that they can be naturally JOINed on primary keys or
foreign keys in a way that guar antees no spurious tuples are generated.

6.2 A functional dependency (FD) is a constraint between two sets of attributes from the
database. It is denoted by

XY
L

84

150

We say that " Yis functionally dependent on X". Also, X is called the left-hand side of the FD.
Y is called the right-hand side of the FD.

A functional dependency is a property of the semantics or meaning of the attributes, i.e., a
property of the relation schema. They must hold on all relation states (extensions) of R. Relation

extensions r(R). AFD X Y isa full functional dependency if removal of any attribute from X
means that the dependen’does not hold any mor e; otherwise, it is a partial functional
dependency.

Examples:

1. SSN_ENAME
2. PNUMBER {PNAME, PLOCATION}
3. {SSN, PNUMBER}_HOURS

FD is property of the relation schema R, not of a particular relation state/instance

Let R be a relation schema, where X R'and Y R
t,t t Xl=t [X]t Y=t [Y
A 2“ 1[] 2[]-1[] 2[]

The FD X Y holds on R if and only if for all possible relations r(R), whenever two tuples of r
agree on thItributes of X, they also agree on the attributes of Y.

the single arrow_denotes "functional dependency™
X_Y canalso Mead as "Xdetermines Y"
tMouble arrow -denotes "logical implication™

6.2.1 Inference Rules

IR1. Reflexivitye.g. X X
ye.g o

a formal statement of trivial dependencies ; useful for derivations
IR2. Augmentation eg. XY XZY

ifa dependem!ol!,then M., freely expand its left hand side
IR3. Transitivity eg. X VY,YZ X Z

the "most p'erful!ferﬂ;e r W useful in multi-step derivations
Armstrong inference rules are
sound

meaning that given a set of functional dependencies F specified on a relation schema R,
any dependency that we can infer from F by using IR1 through IR3 holds ever y relation
state r of R that specifies the dependencies in F. In other words, rules can be used to
derive precisely the closure or no additional FD can be derived.

complete

85

meaning that using IR1 through IR3 repeatedly to infer dependencies until no more
dependencies can be inferred results in the complete set of all possible dependencies that
can be inferred from F. In other words, given a set of FDs, all implied FDs can be derived
using these 3 rules.

Closure of a Set of Functional Dependencies

Given a set X of FDs in relation R, the set of all FDs that are implied by X is called the
closure of X, and is denoted X +.

Algorithms for determining %
X+=X;
repeat

oldX4:= X+
foreachFDY ZinF do
[|

if Y XghenX4:=X4+ Z;

until oldX4= X+

Example:

A BC
EﬁF

B E
clilkr
|
Compute {A, B}of the set of attributes under this set of FDs.

Solution:
Stepl: {A Bkx={A, B}.

Go round the inner loop 4 time, once for each of the given FDs.

On the first iteration, for A BC

A {A, B} I
{A, B} +:={A B, C}. L

86

152

Step2: On the second iteration, for E CE {A B, C}

Step3 :On the third iteration, for B E
B {A, B,C} .
{A, B} +:={A, B, C, E}. L

Step4: On the fourth iteration, for CD EEemains unchanged.

Go round the inner loop 4 times again. On the first iteration result does not change; on the
second it expands to {A,B,C,E,F}; On the third and forth it does not change.

Now go round the inner loop 4 times. Closure does not change and so the whole process
terminates, with

{AB}+={AB,CEF}
Example.

F = { SSN ENAME, PNUMBER {PNAME, PLOCATION}, {SSN,PNUMBER}
HOURS } L

{SSN}= {SSN, ENAME}
{PNUMBER}= ?
{SSN,PNUMBER}= ?

6.3 Normalization

The purpose of normalization.

The problems associated with redundant data.

The identification of various types of update anomalies such as insertion, deletion, and
modification anomalies.

How to recognize the appropriateness or quality of the design of relations.

The concept of functional dependency, the main tool for measuring the appropriateness of
attribute groupings in relations.

How functional dependencies can be used to group attributes into relations that are in a known
normal form.

How to define normal forms for relations.

How to undertake the process of normalization.

How to identify the most commonly used normal forms, namely first (INF), second (2NF), and
third (3NF) normal forms, and Boyce-Codd normal form (BCNF).

How to identify fourth (4NF), and fifth (5NF) normal forms.

87

Main objective in developing a logical data model for relational database systems is to create an
accurate representation of the data, its relationships, and constraints. To achieve this objective,
we must identify a suitable set of relations. A technique for producing a set of relations with
desirable properties, given the data requirements of an enterprise

NORMAL FORMS

A relation is defined as a set of tuples . By definition, all elements of a set are distinct; hence, all
tuples in a relation must also be distinct. This means that no two tuples can have the same
combination of values for alltheir attributes.

Any set of attributes of a relation schema is called a superkey . Every relation has at least one
superkey—the set of all its attributes. A key isa minimal superkey , i.e., a superkey from which
we cannot remove any attribute and still have the uniqueness constraint hold.

In general, a relation schema may have more than one key. In this case, each of the keys is called

a candidate key. It is common to designate one of the candidate keys as the primary key of the
relation. A foreign keyis a key in a relation R but it's not a key (just an attribute) in other
relation R' of the same schema.

Integrity Constraints

The entity integrity constraintstates that no primary key value can be null. This is because the primary
key value is used to identify individual tuples in a relation; having null values for the primary key implies
that we cannot identify some tuples.

The referential integrity constraint is specified between two relations and is used to maintain

the consistency among tuples of the two relations. Informally, the referential integrity constraint

states that a tuple in one relation that refers to another relation must refer to an existing tuple in
that relation.

An attribute of a relation schema R is calleda prime attribute of the relation R if it is a member
of any keyof the relation R. An attribute is called nonprime if it is not a prime attribute—that is,
if it is not a member of any candidate key.

The goal of normalization is to create a set of relational tables that are free of redundant data and
that can be consistently and corr ectly modified. This means that all tables in a relational database
should be in the in the third normal form (3 NF).

Normalization of data can be looked on as a process during which unsatisfactory relation
schemas are decomposed by breaking up their attributes into smaller relation schemas that
possess desirable properties. One objective of the original normalization process is to ensure that
the update anomalies such as insertion, deletion, and modification anomalies do not occur.

88

The most commonly used normal forms

First Normal Form (1NF)
Second Normal Form (2NF)
Third Normal Form (3NF)
Boyce-Codd Normal Form

Other Normal Forms

Fourth Normal Form
Fifth Normal Form

Domain Key Normal Form

6.3.1 First Normal Form (1NF)

First normal form is now considered to be part of the formal definition of a relation; historically,
it was defined to disallow multivalued attributes, composite attributes, and their combinations. It
states that the domains of attributes must include only atomic (simple, indivisible) values and
that the value of any attribute in a tuple must be a single value from the domain of that attribute.

Practical Rule: "Eliminate Repeating Groups,” i.e., make a separate table for each set of related
attributes, and give each table a primary key.

Formal Definition: A relation is in first normal form (1NF) if and only if all underlying simple

domains contain atomic values only.

Figure 14.8 Normalization into INF. {a) Relation schema that is not in
IwE. (b)) Example relation instance. (¢ INF relation with redundancy.

(&) DEP&ERTMEMNT
D&M E OHUMBER DMGERSSN DLOCATIONS
(b} DEPARTMENT
D&M E DHUMBER DMGERSSN DLOCATIONS
Research 4 333445555 Ballbire, Sugarand, Houston]}
Administration 4 987654321 {Stafford
Headquarters 1 BAEREELRERS {Heuston}
(c DEP&ERTMEMT
D&M E DHUMBER DMGERSSN DLOCATION
Research LY 333445555 Bellaire
Research 5 3334455855 Sugartand
Research L 333445555 Hoston
Admiristration 4 ATERL321 Stafford
Headouartars 1 BAREESHESS Heowuston
89

155

6.3.2 Second Normal Form (2NF)

Second normal form is based on the concept of fully functional dependency. A functional X Y

is a fully functional dependency is removal of any attribute A from X means that the dependency-
does not hold any more. A relation schema is in 2NF if every nonprime attribute in relation is

fully functionally dependent on the primary key of the relation. It also can be restated as: a
relation schema is in 2NF if every nonprime attribute in relation is not par tially dependent on any
key of the relation.

Practical Rule: "Eliminate Redundant Data,” i.e., if an attribute depends on only part of a
multivalued key, remove it to a separate table.

Formal Definition: A relation is in second normal form (2NF) if and only if it is in 1INF and
every nonkey attribute is fully dependent on the primar y key.

(&) EMP_FPROU

| 55N | FHUMEER | HOURS | ENAME | PNAME | PLOCATION |

F |

FI2 | +
o | y 4

2NF MCRMALIZATION
™~

EF1 EF2 EF3
SN PHUMEBER HOURS SEM | EMAME PHUKMBER PHAME FLOCATION
FA | | * FO2 |_+ FLG + +

6.3.3 Third Normal Form (3NF)

Third normal form is based on the concept of transitive dependency. A functional dependency
X Y in a relation is a transitive dependency if there is a set of attributes Z that is not a subset
o”}y key of the relation, and both X Z and Z Y hold. In other words, a relation is in 3NF

if, whenever a functional dependency L

X A holds in the relation, either (a) X is a superkey of the relation, or (b) A is a prime
attAte of the relation.

Practical Rule: "Eliminate Columns not Dependent on Key," i.e., if attributes do not contribute to
a description of a key, remove them to a separate table.

90

156

Formal Definition: A relation is in third normal form (3NF) if and only if it is in 2NF and every
nonkey attribute is nontransitively dependent on the primary key.

(b} EMP_DEFT
EMAKE SEN EDATE ADDREZSE | DMWUMEER OHAME | DRMGRSSM
\lL 3ANF NCRMALIZATION
EC1 EC2
ENAME | S5MW | BDOATE | ADDRESS CHUMEER DNLMEER CrAKME OMGREEM

)

i

)

A

INF: R is in 1NF iff all domain values are atomic.

2NF: R is in 2 NF iff R is in 1NF and every nonkey attribute is fully dependent on the key.

3NF: R is in 3NF iff R is 2NF and every nonkey attribute is non-transitively dependent on the

key.

6.4 Boyce-Codd Normal Form (BCNF)

A relation schema R is in Boyce-Codd Normal Form (BCNF) if whenever a FD X -> A holds in
R, then X is a superkey of R

Each normal form is strictly stronger than the previous one:
Every 2NF relation is in INF Every 3NF relation is in 2NF
Every BCNF relation is in 3NF

There exist relations that are in 3NF but not in BCNF
A relation is in BCNF, if and only if every determinant is a candidate key.

Additional criteria may be needed to ensure the the set of relations in a relational database are
satisfactory.

91

157

Figure 14.12 Boyce-Codd normal form. {a) BONF normalization
with the dependency of FD2 being “lost™ in the decomposition.
{(b) A relation & in 3NF but not 1n BONF.

1) LOTS1A
| ProPeRTY IDE | counTy name | om | aren |

FOI + + +
e A | | .
o A |

U{EGNF Mormalization

LOTE1AX LOTS 8
| PROPERTY ID#. AREA | Lote | | AREA | counTy_name
)
lalelc]
FD1 J
FC2 LI

Figure 14.13 A relation TEACH that 15 1n 3~F but not in BONF.

TEACH
STUDENT COURSE INSTRUCTOR
Marayan Database Mark
Smith Database MNavathe
Smith Operating Systems Armrriar
Smith Theory Schulman
Wallace Database Mark
Wallacs Operating Systems Ahamad
Waong Database Cimiecinski
Zelaya Database Mavathe

92

158

If X Y is non-trivial then X is a super key
STR&ET CITY ZIP

{CITY,STREET } ZIP

ZIP CITY

]
Insertion anomaly: the city of a zip code can‘t be stored, if the street is not given

Normalization

STREET ZIP ZIP CITY

Relationship Between Normal Forms

Higher nermal
forms

93

159

Questions

1.

N

What is the need for normalization? Explain the first,second and third normal forms with
examples.

Explain informal design guidelines for relation schemas.

A What is functional dependency?write an algorithm to find a minimal cover for a set of
functional dependencies.

What is the need for normalization ?explain second normal form

Which normal form is based on the concept of transitive dependency? Explain with an
example the decomposition into 3NF

Explain multivalued dependency. Explain 4NF with an example.

Explain any Two informal quality measures employed for a relation schema Design?
Consider the following relations: Car_sale(car_no,date-

sold,salemanno,commission%,discount).assume a car can be sold by multiple salesman

and hence primary key is {car-no,salesman} additional dependencies are: Date-
sold discount and salesmanno ~ commision Yes this relation is in INF
Discuss the minimal sets of FD*S?

94

160

UNIT 7
Data base design 2

Subject Code : 10CS54 IA Marks : 25 No. of Lecture Hours/Week : 04
Exam Hours : 03 Total No. of Lecture Hours : 52 Exam Marks : 100

Data base design 2

7.1 Properties of relational decomposition

7.2 Algorithms for Relational Database Schema Design

7.2.1 Decomposition and Dependency Preservation

7.2.2 Lossless-join Dependency

7.3 Multivolume Dependencies and Fourth Normal Form (4NF)

7.3.1 Fourth Normal Form (4NF)
7.4 Join Dependencies and 5 NF

7.5 Other dependencies:

7.5.1 Template Dependencies

7.5.2 Domain Key Normal Form

95

161

UNIT-7 Data base design 2

7.1 Properties of relational decomposition

Normalization Algorithms based on FDs to synthesize 3NF and BCNF describe two desirable
properties (known as properties of decomposition).
Dependency Preservation Property

Lossless join property

Dependency Preservation Property enables us to enforce a constraint on the original relation
from corresponding instances in the smaller relations.

Lossless join property enables us to find any instance of the original relation from
corresponding instances in the smaller relations (Both used by the design algorithms to achieve
desirable decompositions).

A property of decomposition, which ensures that no spurious rows are generated when relations
are reunited through a natural join operation.

7.2 Algorithm s for Relational Database Schema Design

Individual relations being in higher normal do not guarantee a good deign Database schema must
posses additional properties to guarantee a good design.

Relation Decomposition and Insufficiency of Normal Forms

Suppose R={ A T A, ...,A n} that includes all the attributes of the database. R is a universal

relation schema, which2 states that every attribute name is unique. Using FDs, the algorithms
decomposes the universal relation schema R into a set of relation schemas

D ={R T R p Rn} that will become the relational database schema; D is called a
decomposition of R. Each attribute in R will appear in at least one relation schema R iinthe

decomposition so that no attributes are lost; we have

This is called attribute preservation condition of a decomposition.
7.2.1 Decomposition and Dependency Preservation

We want to preserve dependencies because each dependencies in F represents a constraint on the
database.

96

162

We would like to check easily that updates to the database do not result in illegal relations being created.

It would be nice if our design allowed us to check updates without having to compute natural joins. To
know whether joins must be computed, we need to determine what functional dependencies may be tested
by checking each relation individually.

Let F be a set of functional dependencies on schema R. Let D = {R1, R2, ..., Rn} be a decomposition of

R. Given a set of dependencies F on R, the projection of Fon Ri, _(F), where Ris a subset of R, is the

set of all functional dependencies XY such that attributes in %(' are all corttained in Ri. Hence the
projection of Fon each relation schema Ri in the decomposition D is the set of FDs in F+, such that all
their LHS and RHS attributes are in Ri. Hence, the projection of F on each relation schema Ri in the
decomposition D is the set of functional dependencies in F+.

N CoE) o (L W=Fy

i.e., theunion of the dependencies that hold on each Ri belongs to D be equivalent to closure of F (all possible FDs)

[*Decompose relation, R, with functional dependencies, into relations, R Rn’ with associated

functional dependencies, !
F...F.
1 k

The decomposition isdependency preserving iff
F=(F.. F */
+=(i l)+

If each functional dependency specified in F either appeared directly in one of the relation
schema R in the decomposition D or could be inferred from the dependencies that appear in
some R.

7.2.2 Lossless-join Dependency

A property of decomposition, which ensures that no spurious rows are generated when relations are
reunited through a natural join operation.

Lossless-join property refers to when we decompose a relation into two relations - we can rejoin
the resulting relations to produce the original relation.

Decompose relation, R, with functional dependencies, F, into relations, R1 and R2, with attributes, Al
and A2, and associated functional dependencies, F1 and F2.

97

163

Decompositions are projections of relational schemas

RaBc AfB BdBC

al blcl al bl bl cl
a2 b2 c2 a2 b2 b2 c2
a3 bl c3 a3 bl bl c3

Old tables should be derivable from the newer ones through the natural join operation

A,@m s®aAaBc
al bl cl
a2 b2 c2
a3 bl c3
albl c3
a3 bl cl

Wrong!

R, Risa lossless join decomposition of R iff the attributes common to @&d R contain a key
fdr atleast one of the involved relations 1 2

R
ABZC A,BA‘B B,(,Bc

al blcl al bl bl cl
a2 b2 c2 a2 b2 b2 c2
a3 blcl a3 bl

AR, s B8

98

164

The decomposition is lossless iff :

A A \AisinF4or
AA AR A%sinF
However, sometimesl thefe i thé requirement to decompose a relation into more than two

relations. Although rare, these cases are managed by join dependency and 5NF.

7.3 Multivalued Dependencies and Fourth Normal Form (4NF)

4ANF associated with a dependency calledmulti-valued dependency{MVD). MVDs in a relation are due
to first normal form (1NF), which disallows an attribute in a row from having a set of values.

MVD represents a dependency between attributes (for example, A, B, and C) in a relation, such
that for each value of A there is a set of values for B, and a set of values for C. However, the set
of values for B and C are independent of each other.

MVD between attributes A, B, and C in a relation using the following notation

A B (A multidetermines B)

A C
Formal Definition of Multivalued Dependency

A multivalued dependency (MVD) X Y specified on R, where X, and Y are both
subsets of R and Z = (R — (X Y)) specifies the following restrictions on r(R)

L IX1=t, [X]=t Xt [X]
LIYl=t [Ylandt,[Y] =4[Y]

L[Z1=t,[Z] andt,[Z] =1, [Z]

7.3.1 Fourth Normal Form (4NF)

A relation that is in Boyce-Codd Normal Form and contains no MVDs. BCNF to 4NF involves
the removal of the MVD from the relation by placing the attribute(s) in a new relation along with
a copy of the determinant(s).

99

165

A Relation is in 4NF if it is in 3NF and there is no multivalued dependencies.

o T —
= = |
= —
S
— 5 =
MR I —
== fu—
— m = N
= EMP = L = e
o =2 =
| EMSME PHAME ORAWE | R e
= = g T1
=min x Jot e =~ — =
=mih w Brna — v =
=min x rena = 5 m =
Smit RS Jon ==
= — = =
o
=] EMP_PROJECTS ENF_DEFERDENT S = = [="
—_— i
||=_r~ms FrapdE | |m|m| "::.;L =L
Smith :-c: =mih John = = . =
Srith w ik Anns T o= 0 o=
& 2 2 E
= SUPPLY = = = =
| SHNANE | FERTAME | PRCUMANE | _'::: B E
Smih Balt Propt =- L= =
Smin [E Profy "E o gl _:. =
Aoy Bait Profy vy 3 =
ot n (T8 Prof® E —
_ Moamsky _ MeA ____ Prc o = B 2 'm
Aoy Bait Praps = =
Smih Balt Profy L= = =
=T =2
o Rz R2 =S o Z.g
= = = &
SRLANE FRRTREME | | SHARE PRO_MAME | |m1=!'rrm-|=_ PRONAME et L =
= BE=-m =
Smah Eoe smin Profs Balt Props 9 9 = 3
Smith Hut =mih Profy Put Profy EE =
SoameEky Eca AtcaTeEky ProfyY Balt ProfyY Ly == == .
i ban Mut wal Prof Ml Prof =
Aciamsky ol Sdcameoy Props Fal Prof - -] =
— Lo —
m B o 5.
B oo =
g2 z
2w B S
B A= P
= = g
= 2 o=
I~ |
= =" =
7] —_

7.4 Join Dependencies and 5 NF

A join dependency (jp), denoted by ;p{R,, Ra: ..., R_}, specified on relation schema R,
specifies a constraint on the states r of R. The Consfraint statBs that every legal state rof R should
have a lossless join decompositionintoR _, R, ..., Rn; that is, for every such rwe have

2
* =
G G, DY G) B
Lossless-join property refers to when we decompose a relation into two relations - we can rejoin
the resulting relations to produce the original relation. However, sometimes there is the

requirement to decompose a relation into more than two relations. Although rare, these cases are
managed by join dependency and 5NF.

5NF (or project-join normal form (p3\p)

A relation that has no join dependency.

100

166

7.5 Other dependencies:

7.5.1 Template Dependencies

The idea behind template dependencies is to specify a template—or example—that defines each

constraint or dependency. There are two types of templates: tuple-generating templates and
constraint-generating templates. A template consists of a number of hypothesis tuples that are
meant to show an example of the tuples that may appear in one or more relations. The other part

of the template is the template conclusion. For tuple-generating templates, the conclusion is a set

of tuples that must also exist in the relations if the hypothesis tuples are there. For constraint-

generating templates, the template conclusion is a condition that must hold on the hypothesis

tuples.

7.5.2 Domain Key Normal Form

The idea behind domain-key normal form (P IS to specify (theoretically, at least) the
"ultimate normal form" that takes into account all possible types of dependencies and constraints.

Arelation issaid to be in DKNF ifall constraints and dependencies that should hold on the
relation can be enforced simply by enforcing the domain constraints and key constraints on the
relation.

However, because of the difficulty of including complex constraints in a DKNH eélation, its
practical utility is limited, since it may be quite difficult to specify general integrity constraints.
For example, consider a relation CARMAKE, V|N?§yvhere VvIN4S the vehicle identification

number) and another relation | COUNTRWhere counTRYS the country of
manufacture). A general constrawv Eé&ﬁwgf%llow?ng i orn‘wy.y "If the MAKHS either Toyota

or Lexus, then the first character of the /s @™ J" if the country of manufacture is Japan; if the
MAKHS Honda or Acura, the second character of the yvIN4sa™ J"if the countr y of manufacture
is Japan.” There is no simplified way to represent such constraints short of writing a procedure

(or general assertions) to test them.

Questions

101

Questions

1. Explain
i. Inclusion dependency
ii. ii) Domain Key Normal Form
Explain multivolume dependency and fourth normal form, with an example
Explain lossless join property
what are the ACID Properties? Explain any One?
What is Serializibility?How can seriaizability?Justify your answer?

gk~ wn

102

168

UNIT 8
Data base design 2

Subject Code : 10CS54 IA Marks : 25 No. of Lecture Hours/Week : 04
Exam Hours : 03 Total No. of Lecture Hours : 52 Exam Marks : 100

Transaction Processing Concepts
8.1 Introduction to Transaction Processing
8.2 Transactions, Read and Write Operations
8.3 Why Concurrency Control Is Needed
8.4 Why Recovery Is Needed
8.5 Transaction and System Concepts
8.6 The System Log
8.7 Desirable Properties of Transactions
8.8 Schedules and Recoverability

8.10 Characterizing Schedules Based on Recoverability

103

169

UNIT 8 Transaction Processing Concepts

8.1 Introduction to Transaction Processing

Single-User Versus Multiuser Systems

A DBMS issingle-usenid at most one user ata time can use the system, and itmultiuser if
many users can use the system—and hence access the database—concurrently.

Most DBMS are multiuser (e.g., airline reservation system).

Multiprogramming operating systemallow the computer to execute multiple programs (or
processes) at the same time (having one CPU, concurrent execution of processes is actually
interleaved).

If the computer has multiple hardware processors (CPUs), parallel processinggf multiple
processes is possible.

Figure 19.1 Interleaved processing versus parallel
processing of concurrent transactions.

I

' ' I i i
1 A 1 I i E
I_! 1 i i i
! . f i
1
P : b | i
! I B | 1 B i !
! ! [i i
: . i CPL,
| 1 1 1 [1
! | | I ! | i cPuy
I I 1 | I 1 2
H 1 I 1 f ! H
+ —_—
t t f Tirme

B

8.2 Transactions, Read and Write Operations

A transactionis a logical unit of database processing that includes one or more database access
operations (e.g., insertion, deletion, modification, or retrieval operations). The database
operations that form a transaction can either be embedded within an application program or they
can be specified interactively via a high-level query language such agQL. One way of specifying
the transaction boundaries is by specifying explicitbegin transaction and end transaction
statements in an application program; in this case, all database access operations between the two
are considered as forming one transaction. A single application program may contain more than
one transaction if it contains several transaction boundaries. If the database operations in a
transaction do not update the database but only retrieve data, the transaction is called &ead-only
transaction.

Read-only transactior do not changes the state of a database, only retrieves data.

The basic database access operations that a transaction can include are as follows:

104

170

o read_item(X)reads a database item Xinto a program variable X.
o write_item(X):writes the value of program variable Xinto the database item named X.

Executing @ (oaq iteny?<) cOmmand includes the following steps:

3. Find the address of the disk block that contains itenX.
4. Copy that disk block into a buffer in main memory (if that disk block is not already in
some main memory buffer).
5. Copy item X from the buffer to the program variable namedX.

Executing a \\rite iterfy%) cOmmand includes the following steps:

6. Find the address of the disk block that contains itenx.
7. Copy that disk block into a buffer in main memory (if that disk block is not already in
some main memory buffer).
8. Copy item X from the program variable namedX into its correct location in the buffer.
9. Store the updated block from the buffer back to disk (either immediately or at some later
point in time).

Ficure 19.2 Two sample transactions. (a) Transaction T,.
. ; !
{b) Transaction T..

(a) T {h) Ta
read_item (X'); read_itemn (X);
X=X, X=X+,
write_item (X); write_item (X);
read_item (Y'):

Y =Y+IN;

write_item (Y');

8.3 Why Concurrency Control Is Needed

The Lost Update Problem.

105

171

This problem occurs when two transactions that access the same database items have
their operations interleaved in a way that makes the value of some database item
incorrect. Suppose that transactions T1 and T2 are submitted at approximately the same

time, and suppose that their operations are interleaved then the final value of item X'is
incorrect, because T2 reads the value of X before T1 changes it in the database, and hence
the updated value resulting from T1 is lost. For example, if X =80 at the start (originally
there were 80 reservations on the flight), N =5 (T1 transfers 5 seat reservations from the
flight corresponding to X to the flight corresponding to Y), and M =4 (T2 reserves 4 seats
on X), the final result should be X =79; but in the interleaving of operations, itis X =84
because the update in T1 that removed the five seats from X was lost.

Figure 19.3 Some problems that occur when concurrent
execution 1s uncontrolled. (a) The lost update problem.
{b) The temporary update problem.

il T Tz
rear_bemi X;
X=XN;
ressd ke
X=X
Tirre: il il=mEe;
e _iemd ¥;
! Yeam X i s incomec] value beca s
vz tem(X]; = it updtie by Ty i "lost” farvenwritin]
Y=Y+
wrike_il=m(¥);
':h.l :I'1 T3
read_ibemi X
N=XN,
wile_item
Tins
reac]_ibem)
K=XM;
write_temiX);
read_ibemi ¥);
Transadion Ty bk and must cdhange the wlue -

of X hack to is old wlue; meamshiz Ty
hers e the temponary” ncomect wabieof X

The Temporary Update (or Dirty Read) Problem.

This problem occurs when one transaction updates a database item and then the
transaction fails for some reason. The updated item is accessed by another transaction
before it is changed back to its original value. Figure 19.03(b) shows an example where

T1 updates item X and then fails before completion, so the system must change Xback to

its original value. Before it can do so, however, transaction T2 reads the "temporary"”
value of X,which will not be recorded permanently in the database because of the failure

of T1. The value of item X thatisread by T2 is called dirty data, because it has been

106

172

created by a transaction that has not completed and committed yet; hence, this problem is
also known as the dirty read problem.

Figure 19.3 Some problems that occur when concurrent
execution 1s uncontrolled. (¢) The incorrect summary problem.

(c) T, .

sum:=0}
read _itermi Al
SUTLSENTIHA;

read_itemiX)

=X,

write_itermix);
rea:l.__ilern[};’];. T o eads Xafter W is sublracted and reads
ﬂ-wm;x ' befiore Nis added; awrong surmmary

el e is the result (off by V).

ST =M+ '

reaid_itern(¥7;

¥:=¥Y+N;

write_iterm Y7;

The Incorrect Summary Problem.

If one transaction is calculating an aggregate summary function on a number of records

while other transactions are updating some of these records, the aggregate function may
calculate some values before they are updated and others after they are updated. For
example, suppose that a transaction T3 is calculating the total number of reservations on

all the flights; meanwhile, transaction T1 is executing. If the interleaving of operations
shown in Figure 19.03(c) occurs, the result of T3 will be off by an amount N because T3
reads the value of X after N seats have been subtracted from it but reads the value of Y
before those N seats have been added to it.

Another problem that may occur is called unrepeatable read, where a transaction T
reads an item twice and the itemis changed by another transaction T between the two
reads. Hence, T receives different values for itstwo reads of the same item. This may
occur, for example, if during an airline reservation transaction, a customer is inquiring
about seat availability on several flights. When the customer decides on a particular
flight, the transaction then reads the number of seats on that flight a second time before
completing the reservation.

107

173

8.4 Why Recovery Is Needed

Whenever a transaction is submittedtoa pgpgfor execution, the system is responsible
for making sure that either (1) all the operations in the transaction are completed
successfully and their effect is recorded permanently in the database, or (2) the
transaction has no effect whatsoever onthe database or on any other tr ansactions. The
pBMdNUst not permit some operations of a transaction T to be applied to the database
while other operations of T are not. This may happen if a transaction f ails after executing
some of its operations but before executing all of them.

Types of Failures

Failures are generally classified as transaction, system, and media failures. There are
several possible reasons for a transaction to fail in the middle of execution:

1. A computer failure (system crash):A hardware, software, or network error occurs in the
computer system during transaction execution. Hardware crashes are usually media
failures—for example, main memory failure.

2. A transaction or system errorSome operation in the transaction may cause it to fail,
such as integer overflow or division by zero. Transaction failure may also occur because
of erroneous parameter values or because of a logical programming error . In addition,
the user may interrupt the transaction during its execution.

3. Local errors or exception conditions detected by the transactionDuring transaction
execution, certain conditions may occur that necessitate cancellation of the transaction.
For example, data for the transaction may not be found. Notice that an exception
condition , such as insufficient account balance in a banking database, may cause a
transaction, such as a fund withdrawal, to be canceled. This exception should be
programmed in the transaction itself, and hence would not be considered a failure.

4. Concurrency control enforcement:The concurrency control method (see Chapter 20)
may decide to abort the transaction, to be restarted later, because it violates serializability
(see Section 19.5) or because several transactions are in a state of deadlock.

5. Disk failure: Some disk blocks may lose their data because of a read or write malfunction
or because of a disk read/write head crash. This may happen during a read or a write
operation of the transaction.

6. Physical problems and catastrophes:This refers to an endless list of problems that
includes power or air-conditioning failure, fire, theft, sabotage, overwriting disks or tapes
by mistake, and mounting of a wrong tape by the operator.

Failures of types 1, 2, 3, and 4 are more common than those of types 5 or 6. Whenever a
failure of type 1 through 4 occurs, the system must keep sufficient information to recover
from the failure. Disk failure or other catastrophic failures of type 5 or 6 do not happen
frequently; if they do occur, recovery is a major task.

The concept of transaction is fundamental to many techniques for concurrency control
and recovery from failur es.

108

8.5 Transaction and System Concepts
Transaction States and Additional Operations

A transaction is an atomic unit of work that is either completed in its entirety or not done

at all. For recovery purposes, the system needs to keep track of when the transaction
starts, terminates, and commits or aborts (see below). Hence, the recovery manager keeps
track of the following operations:

0 rks the beginning of transaction execution.
BEGIN_TRA

0 ese speC|fy read or write operations on the database items that are

lgl(:é ﬁed\/ggb of a transaction.
ifies that nsactlon operations have ended and

O END TRANSA ?‘ fOREC! 1@
mar the 'end of transaction execEtlon I-Yvwever at this point it may be necessary to
check whether the changes introduced by the transaction can be permanently applied to
the database (committed) or whether the transaction has to be aborted because it violates
serializability (see Section 19.5) or for some other reason.

0 co TRA % alsa successful endof the transaction so that any changes
%up%'tws) execu eg y the transaction can be safelyyommittedto the database and will
not be undone

0 B (9|"(ABO hIS signals that the transaction hagended unsuccessfully,so that
any c anges or e ects that the transaction may have applied to the database must be
undone.

Figure 19.04 shows a state transition diagram that describes how a transaction moves
through its execution states. A transaction goes into an active state immediately after it
starts execution, where it can issue ToEoeratlons When the transaction ends,

it moves to the partially committed sFate AYVtﬁIS point, some recovery protocols need to
ensure that a system failure will not result in an inability to record the changes of the
transaction permanently (usually by recording changes in the system log). Once this
check is successful, the transaction is said to have reached its commit point and enters the
committed state. Once a transaction is committed, it has concluded its execution
successfully and all its changes must be recorded permanently in the database.

109

Figure 19.4 State transition diagram illustrating
the states for transaction execution.

READ,
WRITE

END
TRANSACTICN

BEGIN
TRAMSACTION

PARTIALLY COMMIT
COMMITTED

8.6 The System Log

To be able to recover from failures that affect transactions, the system maintalogta keep
track of all transactions that affect the values of database items.
Log records consists of the following informationTrefers to a unique transaction_id):

1. [start transactlofﬂ Indicates that transactionT has started execution.

2. [write itemT.X,0ld_value,new_valug: Indicates that transactioril has changed the value

of database itemX from old_value to new_value.

3. [read itemT . X]: Indicates that transactionT has read the value of database itemX.
4. [commit]: Indicates that transactio has completed successfully, and affirms that its

effect can be committed (recorded permanently) to the database.
5. [abortT]: Indicates that transactionT has been aborted.
8.7 Desirable Properties of Transactions

Transactions should posses the following (ACID) properties:

Transactions should possess several properties. These are often called the cpProperties, and
they should be enforced by the concurrency control and recover y methods é t‘he DBMS The

following are the A pproperties:

1. Atomicity: A transaction is an atomic unit of processing; it is either performed in its entirety or
not performed at all.

110

176

2.

3.

Consistency preservation: A transaction is consistency preserving if its complete execution
take(s) the database from one consistent state to another.

Isolation: A transaction should appear as though it is being executed in isolation from other
transactions. That is, the execution of a transaction should not be interfered with by any other
transactions executing concurrently.

Durability or permanency:The changes applied to the database by a committed transaction

must persist in the database. These changes must not be lost because of any failure.
The atomicity property requires that we execute a transaction to completion. It is the
responsibility of the transaction recovery subsystem of a pemdo ensure atomicity. If a

transaction fails to complete for some reason, such as a system crash in the midst of transaction
execution, the recovery technique must undo any effects of the transaction on the database.

8.8 Schedules and Recoverability

A schedule (or history) Sof ntransactions T1, T2, ..., Tn is an ordering of the operations of the

transactions subject to the constraint that, for each transaction Ti that participates in S, the
operations of Tiin S must appear in the same or der in which they occur in Ti. Note, however,
that operations from other transactions Tj can be interleaved with the operations of Ti in S. For

now, consider the order of operations in S to be a total ordering, although it is possible
theoretically to deal with schedules whose operations form partial orders.

S0 r G, (A w (XD, r (2w LD w (),

Similarly, the schedule f or Figur e 19.03(b), which we call Sh, can be written as follows, if we

assume that transaction T1 aborted after its read_itenm operation:

Sy Py W LD, m G Wl (T

Two operations in a schedule are said to conflict if they satisfy all three of the following
conditions:

1. they belong to different transactions;
2. they access the same item X;and
3. at least one of the operations is a Write_itenﬁx)'

111

For example, in schedule , 5 e operations COMLYY and Wa(X)! operations

72X and Wl(}ﬂ:% and the operations wi(X) and w2(X). However, the operations r1(X) and
1z(A) uu not courilict, since they are both read operations; the operations w2(X) and w1(Y) do not
conflict, because they operate on distinct data items X and Y; and the operations r1(X) and wl(X)
do not conflict, because they belong to the same transaction.

A schedule S of n transactions T1, T2, ..., Tn, issaid tobea complete schedule if the following
conditions hold:

1. The operations inS are exactly those operationsin T1, T2, ..., Tn, including a commit or abort
operation as the last operation for each transaction in the schedule.

2. For any pair of operations from the same transaction Ti, their order of appearance i6is the same
as their order of appearance in Ti.

3. For any two conflicting operations, one of the two must occur before the other in the schedule.

8.10 Characterizing Schedules Based on Recoverability

once atransaction T is committed, it should neverbe necessar y to roll back T. The schedules that
theoretically meet this criterion are called recoverable schedules and those that do not are called
nonrecoverable, and hence should not be permitted.

A schedule S isrecoverable if no transaction T in S commits until all transactions T'that have
written an item that T reads have committed. A transaction T reads from transaction Tin a

schedule S if some item X is first written by later read by T. In addition, uld not
have been aborted before T reads item X, an®here should be no transactions that w X after
!writes it and before T reads it (unless those transactions, if any, have aborted before T reads

Consider the schedule t!ngiven below, which is the same as schedule exce 5, that two

commit operations have addedto : g,

&) (D w (), m () w (A ey w (B 2,

Sa' is recoverable, even though it suffers from the lost update problem. However,
consider the two (partial) schedules 2 and Sa that follow:

S r G w (X G (0wl &) o g,
&y r G w LA, r (D, (0w, () w (T 0 ey,
Sy r G w (D ey G 7 (1wl w (1) @ ag

112

IS not recover able, because T2 reads item X from T1, and then T2 commits before T1
mits. If T1 aborts after the c2 operation in , thaasthe value of X that T2 read is no longer

valid and T2 must be aborted after it had b committed, leading to a schedule that is not
recoverable. For the schedule to be recoverable, the c2 operation in must ggepostponed until

after T1 commits. If T1 aborts instead of committing, then T2 should also®™ort as shown in Se,
because the value of X it read is no longer valid.

In a recoverable schedule, no committed transaction ever needs to be rolled back. However, it is
possible for a phenomenon known as cascading rollback (or cascading abort) to occur, where
an uncommitted transaction has to be rolled back because it read an item from a transaction that
failed.

Serializability of Schedules

If no interleaving of operations is permitted, there are only two possible arrangement for
transactions T1 and T2.

1. Execute all the operations of T1 (in sequence) followed by all the operations of T2 (in

sequence).

2. Execute all the operations of T2 (in sequence) followed by all the operations of T1
A schedule Sis serialif, for every transaction Tall the operations of Tare executed consecutively
in the schedule.
A schedule Sof ntransactions is serializabldf it is equivalent to some serial schedule of the
same ntransactions.

113

179

Ficure 19.5
and T {a) Serial schedule A: T, followed by T, (b} Serial schedule B: T, followed by

Examples of serial and nonserial schedules involving transactions T

T, (c) Two nonsenal schedules € and D with interleaving of operations.

(a)

Tima

n Tz b T T
resad_liEmix s e
X=XN, KN,
witle_tiemix); Wrie_lemix);
==l = resad e
=Y Time =N,
wiile_liemgy); wrie_llemsy;

T K el
K= XA =¥
wrila_emx); wrie_lemy Yy,
Schecil & Schedue B
T1 TI T1 TE‘
read_Remiy; read_kemix)
K= =N,
i) wiite Ilemix g
X=X e ke,
Time il _llesm X M=XeM,
read_kemiY); wiite_Itemix
wite T ﬁ?;::"[v];
Y=l eIt
wrlle_tlemy ¥l
Sphedule © Schedule D

8.11 Transaction Support in SQL

An SQL transaction is a logical unit of work (i.e., a single SQL statement).

The access modecan be specified as READ ONLYor READ WRITE The default isREAD
WRITE, which allows update, insert, delete, and create commands to be executed.

The diagnostic area sizeption specifies an integer value n, indicating the number of conditions
that can be held simultaneously in the diagnostic area.
The isolation leveloption is specified using the statementISOLATION LEVEL
the default isolation level isSSERIALIZABLE

A sample SQL transaction might look like the following:

EXEC SQL WHENEVER SQLERROR GOTO UNDO;
EXEC SQL SET TRANSACTION
READ WRITE
DIAGNOSTICS SIZE 5
ISOLATION LEVEL SERIALIZABLE;

114

EXEC SQL INSERT INTO EMPLOYEE (FNAME, LNAME, SSN, DNO, SALARY)
VALUES ('Jabbar', 'Ahmad’, '998877665', 2, 44 000);
EXEC SQL UPDATE EMPLOYEE
SET SALARY = SALARY * 1.1 WHERE DNO = 2;
EXEC SQL COMMIT;

180

GOTO THE_END;
UNDO: EXEC SQL ROLLBACK;
THE END: ...

115

181

Questions

1. Write a short Notes on

i 2PL Lock
ii. Two-P Deadlock

N

Three phase Locking Techniques: Essential components
Explain properties of a transaction with state transition diagram.
4. What is a schedule? Explain with example serial, non serial and conflict serializable
schedules.
5. Write short notes on
1. Write ahead log protocol
2. Time stamp Ordering
3. Two phase locking protocol
6. Explain the problems that can occur whaen concurrent transaction are executed give
examples

w

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(Affiliated to the Visvesvaraya Technological University, Belagavi)

116
Department of Master of Computer Applications

182 DRAKSHAVENI G,DEPT.OF MCA,BMSIT&M

183

Subject: Database Management System
Prepared by: Drakshaveni G
Assistant Professor

Dept.of MCA
BMSIT&M

Module -5

DRAKSHAVENI G,DEPT.OF MCA,BMSIT&M

Transaction Management

A transaction can be defined as a group of tasks. A single task is the minimum processing unit which
cannot be divided further.

Let’s take an example of a simple transaction. Suppose a bank employee transfers Rs 500 from A's account
to B's account. This very simple and small transaction involves several low-level tasks.

A’s Account

Open_Account(A)

Old_Balance = A.balance
New_Balance = Old_Balance - 500
A.balance = New_Balance
Close_Account(A)

B’s Account

Open_Account(B)

Old_Balance = B.balance
New_Balance = Old_Balance + 500
B.balance = New_Balance
Close_Account(B)

ACID Properties

A transaction is a very small unit of a program and it may contain several lowlevel tasks. A transaction in a
database system must maintain Atomicity, Consistency, Isolation, and Durability — commonly known as
ACID properties — in order to ensure accuracy, completeness, and data integrity.

Atomicity — This property states that a transaction must be treated as an atomic unit, thatis, either
all of its operations are executed or none. There must be no state in a database where a transaction is
left partially completed. States should be defined either before the execution of the transaction or
after the execution/abortion/failure of the transaction.

Consistency — The database must remain in a consistent state after any transaction. Notransaction
should have any adverse effect on the data residing in the database. If the database was in a
consistent state before the execution of a transaction, it must remain consistent after the execution
of the transaction as well.

Durability — The database should be durable enough to hold all its latest updates even ifthe
system fails or restarts. If a transaction updates a chunk of data in a database and commits, then the
database will hold the modified data. If a transaction commits but the system fails before the data
could be written on to the disk, then that data will be updated once the system springs back into
action.

185 DRAKSHAVENI G,DEPT.OF MCA,BMSIT&M

Isolation — In a database system where more than one transaction are being executedsimultaneously
and in parallel, the property of isolation states that all the transactions will be carried out and executed
as if it is the only transaction in the system. No transaction will affect the existence of any other

transaction.

Serializability

When multiple transactions are being executed by the operating system in a multiprogramming
environment, there are possibilities that instructions of one transactions are interleaved with some other

transaction.

Schedule — A chronological execution sequence of a transaction is called a schedule. Aschedule
can have many transactions in it, each comprising of a number of instructions/tasks.

186 DRAKSHAVENI G,DEPT.OF MCA,BMSIT&M

Serial Schedule — It is a schedule in which transactions are aligned in such a way that onetransaction
is executed first. When the first transaction completes its cycle, then the next transaction is executed.
Transactions are ordered one after the other. This type of schedule is called a serial schedule, as
transactions are executed in a serial manner.
In a multi-transaction environment, serial schedules are considered as a benchmark. The execution sequence
of an instruction in a transaction cannot be changed, but two transactions can have their instructions
executed in a random fashion. This execution does no harm if two transactions are mutually independent and
working on different segments of data; but in case these two transactions are working on the same data, then
the results may vary. This ever-varying result may bring the database to an inconsistent state.

To resolve this problem, we allow parallel execution of a transaction schedule, if its transactions are
either serializable or have some equivalence relation among them.

Equivalence Schedules

An equivalence schedule can be of the following types —

Result Equivalence

If two schedules produce the same result after execution, they are said to be result equivalent. They may
yield the same result for some value and different results for another set of values. That's why this
equivalence is not generally considered significant.

View Equivalence

Two schedules would be view equivalence if the transactions in both the schedules perform similar actions
in a similar manner.

For example —
If T reads the initial data in S1, then it also reads the initial data in S2.
If T reads the value written by J in S1, then it also reads the value written by J in S2.

If T performs the final write on the data value in S1, then it also performs the final write on the
data value in S2.

Conflict Equivalence

Two schedules would be conflicting if they have the following properties —

187 DRAKSHAVENI G,DEPT.OF MCA,BMSIT&M

Both belong to separate transactions.
Both accesses the same data item.
At least one of them is "write" operation.

Two schedules having multiple transactions with conflicting operations are said to be conflict
equivalent if and only if —

Both the schedules contain the same set of Transactions.
The order of conflicting pairs of operation is maintained in both the schedules.

Note — View equivalent schedules are view serializable and conflict equivalent schedules areconflict
serializable. All conflict serializable schedules are view serializable too.

States of Transactions

A transaction in a database can be in one of the following states —

Active — In this state, the transaction is being executed. This is the initial state of everytransaction.
Partially Committed — When a transaction executes its final operation, it is said to be in apartially

committed state.

Failed — A transaction is said to be in a failed state if any of the checks made by thedatabase
recovery system fails. A failed transaction can no longer proceed further.

Aborted — If any of the checks fails and the transaction has reached a failed state, then therecovery manager
rolls back all its write operations on the database to bring the database back to its original state where it was
prior to the execution of the transaction. Transactions in this state are called aborted. The database recovery

module can select one of the two operations after a transaction aborts —
Re-start the transaction
Kill the transaction

Committed — If a transaction executes all its operations successfully, it is said to becommitted. All
its effects are now permanently established on the database system.

188 DRAKSHAVENI G,DEPT.OF MCA,BMSIT&M

CONCURRENCY CONTROL

In a multiprogramming environment where multiple transactions can be executed simultaneously, it is
highly important to control the concurrency of transactions. We have concurrency control protocols to
ensure atomicity, isolation, and serializability of concurrent transactions. Concurrency control protocols can
be broadly divided into two categories —

Lock based protocols

Time stamp based protocols
Lock-based Protocols

Database systems equipped with lock-based protocols use a mechanism by which any transaction cannot
tead or write data until it acquires an appropriate lock on it. Locks are of two kinds —

Binary Locks — A lock on a data item can be in two states; it is either locked or unlocked.

Shared/exclusive — This type of locking mechanism differentiates the locks based on theiruses. If a
lock is acquired on a data item to perform a write operation, it is an exclusive lock. Allowing more
than one transaction to write on the same data item would lead the database into an inconsistent state.
Read locks are shared because no data value is being changed.

There are four types of lock protocols available —
Simplistic Lock Protocol

Simplistic lock-based protocols allow transactions to obtain a lock on every object before a ‘write'
operation is performed. Transactions may unlock the data item after completing the ‘write’ operation.

Pre-claiming Lock Protocol
Pre-claiming protocols evaluate their operations and create a list of data items on which they need locks.
Before initiating an execution, the transaction requests the system for all the locks it needs beforehand. If all

the locks are granted, the transaction executes and releases all the locks when all its operations are over. If
all the locks are not granted, the transaction rolls back and waits until all the locks are granted.

Lock acquisition
phase

N

T begin Tend ™€

¥

Two-Phase Locking 2PL

This locking protocol divides the execution phase of a transaction into three parts. In the first part, when the
transaction starts executing, it seeks permission for the locks it requires. The second part is where the
transaction acquires all the locks. As soon as the transaction releases its first lock, the third phase starts. In this
phase, the transaction cannot demand any new locks; it only releases the acquired locks.

190

\./ \/

T begin T end Hime

DRAKSHAVENI G,DEPT.OF MCA,BMSIT&M

Two-phase locking has two phases, one is growing, where all the locks are being acquired by the transaction;
and the second phase is shrinking, where the locks held by the transaction are being released.

To claim an exclusive write lock, a transaction must first acquire a shared read lock and then
upgrade it to an exclusive lock.

Strict Two-Phase Locking

The first phase of Strict-2PL is same as 2PL. After acquiring all the locks in the first phase, the transaction
continues to execute normally. But in contrast to 2PL, Strict-2PL does not release a lock after using it. Strict-
2PL holds all the locks until the commit point and releases all the locks at a time.

Strict-2PL does not have cascading abort as 2PL does.

Timestamp-based Protocols

The most commonly used concurrency protocol is the timestamp based protocol. This protocol uses
either system time or logical counter as a timestamp.

Lock-based protocols manage the order between the conflicting pairs among transactions at the time of
execution, whereas timestamp-based protocols start working as soon as a transaction is created.

Every transaction has a timestamp associated with it, and the ordering is determined by the age of the
transaction. A transaction created at 0002 clock time would be older than all other transactions that come
after it. For example, any transaction 'y' entering the system at 0004 is two seconds younger and the priority
would be given to the older one.

In addition, every data item is given the latest read and write-timestamp. This lets the system know when the
last ‘read and write’ operation was performed on the data item.

Timestamp Ordering Protocol
The timestamp -ordering protocol ensures serializability among transactions in their conflicting read and
write operations. This is the responsibility of the protocol system that the conflicting pair of tasks should be
executed according to the timestamp values of the transactions.

The timestamp of transaction Ti is denoted as TS(T;).

Read time-stamp of data-item X is denoted by R-timestampX.

Write time-stamp of data-item X is denoted by W-timestampX.
191 DRAKSHAVENI G,DEPT.OF MCA,BMSIT&M

Timestamp ordering protocol works as follows —

192

DRAKSHAVENI G,DEPT.OF MCA,BMSIT&M

If a transaction Ti issues a readX operation —

, I TSTi< W-timestampX

¢ Operation rejected.

0

If TS;I'i>: W-timestampX

0

Operation executed.
u
o All data-item timestamps updated.
If a transaction Ti issues a writeX operation —

If TSTi< R-timestampX

Operation rejected.

If TSTi< W-timestampX
Operation rejected and Ti rolled back.
Otherwise, operation executed.
Thomas' Write Rule
This rule states if TSTi< W-timestampX, then the operation is rejected and Ti is rolled back.
Time-stamp ordering rules can be modified to make the schedule view serializable.

Instead of making Ti rolled back, the ‘write' operation itself is ignored.

DBMS-DEADLOCK

Inamulti-

processsystem,deadlockisanunwantedsituationthatarisesinasharedresourceenvironment,whereaprocessindefinitelywaitsf

oraresourcethatisheldbyanotherprocess.
193 DRAKSHAVENI G,DEPT.OF MCA,BMSIT&M

Forexample,assumeasetoftransactions{T0,T1,T2,..,Tn}. ToneedsaresourceXtocompleteitstask.Resource XisheldbyT1,a
ndT1iswaitingforaresourceY ,whichisheldbyT2.T2iswaitingforresourceZ,whichisheldbyTg. Thus,alltheprocesseswaitf
oreachothertoreleaseresources.Inthissituation,noneoftheprocessescanfinishtheirtask. Thissituationisknownasadeadlock.

Deadlocksarenothealthyforasystem.Incaseasystemisstuckinadeadlock,thetransactionsinvolvedinthedeadlockareeitherroll
edbackorrestarted.

DeadeockPrevention

Topreventanydeadlocksituationinthesystem,theDBMSaggressivelyinspectsalltheoperations,wheretransactionsareaboutto
execute. TheDBMSinspectstheoperationsandanalyzesiftheycancreateadeadlocksituation.Ifitfindsthatadeadlocksituation
mightoccur,thenthattransactionisneverallowedtobeexecuted.

Therearedeadlockpreventionschemesthatusetimestamporderingmechanismoftransactionsinordertopredetermineadeadlo
cksituation.

Wait-DieScheme

Inthisscheme, ifatransactionrequeststolockaresourcedataitem,whichisalreadyheldwithaconflictinglockbyanothertran
saction,thenoneofthetwopossibilitiesmayoccur—

IfTS(Ti)<TS(Tj)—thatisTj,whichisrequestingaconflictinglock,isolderthanTj—thenT jisallowedtowaituntiltheda
ta-itemisavailable.

IfTS(Ti)>TS(tj)-thatisTjisyoungerthanT j-thenTjdies. Tjisrestartedlaterwitharandomdelaybutwiththesametim
estamp.

Thisschemeallowstheoldertransactiontowaitbutkillstheyoungerone.

Wound-WaitScheme

Inthisscheme, ifatransactionrequeststolockaresourcedataitem,whichisalreadyheldwithconflictinglockbysomeanothertrans
action,oneofthetwopossibilitiesmayoccur—

194 DRAKSHAVENI G,DEPT.OF MCA,BMSIT&M

IfTS(Ti)<TS(Tj),thenTjforcesT jtoberolledback—thatisTjwoundsTj. Tjisrestartedlaterwitharandomdelaybutwi
ththesametimestamp.

IfTS(Ti)>TS(Tj),thenTiisforcedtowaituntiltheresourceisavailable.

Thisscheme,allowstheyoungertransactiontowait;butwhenanoldertransactionrequestsanitemheldbyayoungerone, theoldert
ransactionforcestheyoungeronetoabortandreleasetheitem.

Inboththecases, thetransactionthatentersthesystematalaterstageisaborted.

DeadeockAvoidance

Abortingatransactionisnotalwaysapracticalapproach. Instead,deadlockavoidancemechanismscanbeusedtodetectanydead|
ocksituationinadvance.Methodslike"wait-

forgraph"areavailablebuttheyaresuitableforonlythosesystemswheretransactionsarelightweighthavingfewerinstancesofres
ource.Inabulkysystem,deadlockpreventiontechniquesmayworkwell.

Wait-forGraph

195 DRAKSHAVENI G,DEPT.OF MCA,BMSIT&M

Thisisasimplemethodavailabletotrackifanydeadlocksituationmayarise.Foreachtransactionenter
ingintothesystem,anodeiscreated.WhenatransactionT jrequestsforalockonanitem,sayX,whi

chisheldbysomeothertransactionTj,adirectededgeiscreatedfromTtoT).IfTjreleasesitemXt
heedgebetweenthemisdroppedandTjlocksthedataitem.

Thesystemmaintainsthiswait-

forgraphforeverytransactionwaitingforsomedataitemsheldbyothers. Thesystemkeepscheckingift
here'sanycycleinthegraph.

Waits-for Lock(Y)

T]

Waits-for Lock(X)

Here,wecanuseanyofthetwofollowingapproaches—

First,donotallowanyrequestforanitem,whichisalreadylockedbyanothertransaction. Thisis
notalwaysfeasibleandmaycausestarvation,whereatransactionindefinitelywaitsforadataite
mandcanneveracquireit.

Thesecondoptionistorollbackoneofthetransactions. Itisnotalwaysfeasibletorollbacktheyo
ungertransaction,asitmaybeimportantthantheolderone.Withthehelpofsomerelativealgorit
hm,atransactionischosen,whichistobeaborted. Thistransactionisknownasthevictimandthe
processisknownasvictimseeection.

196 DRAKSHAVENI G,DEPT.OF MCA,BMSIT&M

