PYTHON APPLICATION PROGRAMMING (OPEN ELECTIVE)

(Effective from the academic year 2018 -2019)

SEMESTER - VII

Subject Code	18CS752	IA Marks	40
Number of Lecture Hours/Week	3:0:0	Exam Marks	60
Total Number of Lecture Hours	40	Exam Hours	03

CREDITS – 03

Course Objectives: This course will enable students to

- Learn Syntax and Semantics and create Functions in Python.
- Handle Strings and Files in Python.
- Understand Lists, Dictionaries and Regular expressions in Python.
- Implement Object Oriented Programming concepts in Python
- Build Web Services and introduction to Network and Database Programming in Python.

Module – 1	Contact Hours
Why should you learn to write programs, Variables, expressions and statements,	08
Conditional execution, Functions	
Textbook 1: Chapters 1 – 4	
RBT: L1, L2, L3	
Module – 2	L
Iteration, Strings, Files	08
Textbook 1: Chapters 5–7	
RBT: L1, L2, L3	
Module – 3	
Lists, Dictionaries, Tuples, Regular Expressions	08
Textbook 1: Chapters 8 – 11	
RBT: L1, L2, L3	
Module – 4	
Classes and objects, Classes and functions, Classes and methods	08
Textbook 2: Chapters 15 – 17	
RBT: L1, L2, L3	
Module – 5	
Networked programs, Using Web Services, Using databases and SQL	
Textbook 1: Chapters 12–13, 15	
RBT: L1, L2, L3	
Course Outcomes: After studying this course students will be able to	

Course Outcomes: After studying this course, students will be able to

- Examine Python syntax and semantics and be fluent in the use of Python flow control and functions.
- Demonstrate proficiency in handling Strings and File Systems.
- Create, run and manipulate Python Programs using core data structures like Lists, Dictionaries and use Regular Expressions.
- Interpret the concepts of Object-Oriented Programming as used in Python.
- Implement exemplary applications related to Network Programming, Web Services and Databases in Python.

Question paper pattern:

- The question paper will have ten questions.
- Each full Question consisting of 20 marks
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Charles R. Severance, "**Python for Everybody: Exploring Data Using Python 3",** 1st Edition, CreateSpace Independent Publishing Platform, 2016. (http://do1.dr-chuck.com/pythonlearn/EN us/pythonlearn.pdf)
- 2. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2ndEdition, Green Tea Press, 2015. (http://greenteapress.com/thinkpython2/thinkpython2.pdf) (Download pdf files from the above links)

Reference Books:

- 1. Charles Dierbach, "Introduction to Computer Science Using Python",1st Edition, Wiley India Pvt Ltd, 2015. ISBN-13: 978-8126556014
- 2. Gowrishankar S, Veena A, "Introduction to Python Programming", 1st Edition, CRC Press/Taylor & Francis, 2018. ISBN-13: 978-0815394372
- 3. Mark Lutz, "**Programming Python**",4th Edition, O'Reilly Media, 2011.ISBN-13: 978-9350232873
- 4. Roberto Tamassia, Michael H Goldwasser, Michael T Goodrich, "Data Structures and Algorithms in Python", 1st Edition, Wiley India Pvt Ltd, 2016. ISBN-13: 978-8126562176
- 5. ReemaThareja, "Python Programming Using Problem Solving Approach", Oxford university press, 2017. ISBN-13: 978-0199480173