ADDITIONAL OPEN ELECTIVES-B OFFERED BY EC/TC BOARD

	B. E. EC/TE		
Choice Based Credit System	n (CBCS) and Outcome Bas	sed Education (OB	E)
	SEMESTER – VII		
ARM	EMBEDDED SYSTEMS		
Course Code	18EC753	CIE Marks	40
Number of Lecture Hours/Week	03	SEE Marks	60
Total Number of Lecture Hours	40(8Hours/Module)	Exam Hours	03
	CREDITS – 03		
Course objective: This course will ena	able students to:		
 Understand the importance and 	l applications of ARM Design	n	

- Know the architecture of ARM processor
- Use instruction sets of ARM processor
- Analyze the adaptation of C code, firmware, OS, Interrupts, caches, etc. in ARM embedded

systems		
Module-1	RBT Level	
ARM Embedded Systems Introduction, RISC design philosophy, ARM design philosophy, Embedded system hardware – AMBA bus protocol, ARM bus technology, Memory, Peripherals, Embedded system software – Initialization (BOOT) code, Operating System, Applications. ARM Processor Fundamentals ARM core dataflow model, registers, current program status register, Pipeline, Exceptions, Interrupts and Vector Table, Core extensions.		
Module-2		
Introduction to the ARM Instruction set Introduction, Data processing instructions, Load - Store instruction, Software interrupt instructions, Program status register instructions, Loading constants, Conditional Execution. ALP programming.	L1, L2, L3	
Module-3		
Introduction to the THUMB instruction set Introduction, THUMB register usage, ARM – THUMB interworking, Other branch instructions, Data processing instructions, Stack instructions, Software interrupt instructions. ALP programming	L1, L2, L3	
Module-4		
Efficient C Programming: Overview of C Compilers and optimization, Basic C data types, Local Variable Types, Portability issues Exception and Interrupt Handling: Exception Handling-ARM Processor Exceptions and Modes, Vector Table, Exception Priorities, Link Register Offset, Interrupts-Interrupt Latency, Basic Interrupt Stack design and implementation, Interrupt Handling Schemes (general description only of the schemes)		
Module-5		
Firmware: Firmware and Bootloader Embedded Operating Systems: Fundamental Components Caches: The memory Hierarchy and caches memory-caches and memory management units, Cache architecture basic architecture of caches memory, basic operation of cache controller, the relationship between cache and main memory.		

Course Outcomes: After studying this course, students will be able to:

- 1. Depict the organization, architecture, bus technology, memory and operation of the ARM processors
- 2. Employ the knowledge of Instruction set of ARM processors to develop basic Assembly Language Programs
- 3. Recognize the importance of the Thumb mode of operation of ARM processors
- 4. Describe the techniques involved in writing C code for ARM processors and Exception & Interrupt handling in ARM Processors
- 5. Describe the importance and use of Firmware, OS and cache in ARM Embedded systems

Students have to conduct the following experiments as a part of CIE marks along with other Activities:

Conduct the following experiments by writing Assembly Language Program (ALP) using ARM Cortex M3 Registers using an evaluation simulator and the required software tool.

- 1. Write an ALP to find the sum of 10 integer numbers.
- 2. Write an ALP to multiply two 16-bit binary numbers.
- 3. Write an ALP to find factorial of a number.
- 4. Write an ALP to add an array of 16-bit numbers and store the 32-bit result in internal RAM
- 5. Write an ALP to find the square of a number (1 to 10) using look-up table.
- 6. Write an ALP to find the largest/smallest number in an array of 32 numbers.

Question paper pattern:

- Examination will be conducted for 100 marks with question paper containing 10 full questions, each of 20 marks.
- Each full question can have a maximum of 4 sub questions.
- There will be 2 full questions from each module covering all the topics of the module.
- Students will have to answer 5 full questions, selecting one full question from each module.
- The total marks will be proportionally reduced to 60 marks as SEE marks is 60.

Text Book:

"ARM System Developers Guide", Andrew N Sloss, Dominic System and Chris Wright, Elsevier, Morgan Kaufmann publisher, 1st Edition, 2008, ISBN:1758608745.

References:

- 1. "ARM System on chip Architecture", Furber S, Addison Wiley, 2nd Edition, 2008, ISBN:9780201675191
- 2. "Embedded System", Rajkamal, Tata McGraw-Hill Publishers, 2nd Edition, 2008, ISBN: 0070494703.